Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Структурное подразделение «Инженерной и компьютерной графики»

УТВЕРЖДЕНА:

на заседании кафедры Протокол №7 от <u>05 февраля 2025</u> г.

Рабочая программа дисциплины

«ИНЖЕНЕРНАЯ И КОМПЬЮТЕРНАЯ ГРАФИКА»
Направление: 15.03.04 Автоматизация технологических процессов и производств
Системы и средства автоматизации в металлургической промышленности
Квалификация: Бакалавр
Форма обучения: очная

Документ подписан простой электронной подписью

Составитель программы: Кострубова Ирина

Ивановна

Дата подписания: 16.06.2025

Документ подписан простой электронной подписью

Утвердил: Перелыгина Александра Юрьевна

Дата подписания: 17.06.2025

1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

1.1 Дисциплина «Инженерная и компьютерная графика» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ОПК ОС-1 Способность применять	
естественнонаучные и общеинженерные знания,	ОПК ОС-1.3
методы математического анализа и моделирования в	OHR OC-1.5
профессиональной деятельности	
ОПК ОС-4 Способность работать с нормативно-	
технической документацией, применять ее в	ОПК ОС-4.1
профессиональной деятельности	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ОПК ОС-1.3	Оперирует методами изображения и моделирования геометрических форм и предметов, способами решения графических задач. Выполняет и читает чертежи и другую конструкторскую документацию	Знать общие методы построения обратимых чертежей пространственных объектов; алгоритмы решения позиционных и метрических задач; базовые инструменты работы графических компьютерных программ Уметь на основании полученных данных решать графические задачи: применять методы начертательной геометрии при решении позиционных и метрических задач на алгоритмической основе; применять графические компьютерные программы Владеть методами изображения и моделирования геометрических форм и предметов, способами решения графических задач, положениями и требованиями ЕСКД в отношениии оформления чертежей
ОПК ОС-4.1	Оперирует положениями и требованиями ЕСКД в	Знать положения и требования ЕСКД в отношении
	отношении конструкторской документации, обладает	конструкторской документации; методы и средства автоматизации
	навыками поиска требуемых стандартов и других нормативно-технических	выполнения и оформления проектно-конструкторской документации
	документов (НТД), применения требований НТД в	Уметь выполнять и читать чертежи и другую конструкторскую

	документацию
	Владеть навыками поиска
	требуемых стандартов и других
профессиональной деятельности	нормативно-технических
	документов, применения
	требований НТД в
	профессиональной деятельности

2 Место дисциплины в структуре ООП

Изучение дисциплины «Инженерная и компьютерная графика» базируется на результатах освоения следующих дисциплин/практик: Нет

Дисциплина является предшествующей для дисциплин/практик: «Проектирование автоматизированных систем», «Технические средства автоматизации и управления», «Проектная деятельность», «Прикладная механика», «Основы проектной деятельности», «Метрология, стандартизация и сертификация»

3 Объем дисциплины

Объем дисциплины составляет – 2 ЗЕТ

Вид учебной работы	Трудоемкость в академич (Один академический час со минутам астрономическ	ответствует 45
	Всего	Семестр № 1
Общая трудоемкость дисциплины	72	72
Аудиторные занятия, в том числе:	48	48
лекции	16	16
лабораторные работы	0	0
практические/семинарские занятия	32	32
Самостоятельная работа (в т.ч. курсовое проектирование)	24	24
Трудоемкость промежуточной аттестации	0	0
Вид промежуточной аттестации (итогового контроля по дисциплине)	Зачет с оценкой	Зачет с оценкой

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

	Harnestonarra		Виды контактной работы					C	PC	Форма
No	Наименование	Лек	ции	Л	P	П3(0	CEM)	ن	PC	Форма
п/п	раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	No	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Основы построения геометрических образов. Компьютерная	1	2			1	2	2	3	Проверочн ая работа

	графика								
2	Основы начертательной геометрии. Задание и изображение геометрических образов на ортогональном чертеже.	2	5		2, 3,	6	2, 4	8	Проверочн ая работа
3	Основы начертательной геометрии. Позиционные задачи.	3	4		5, 6	4	4	4	Проверочн ая работа
4	Основы начертательной геометрии. Способы преобразования эпюра Монжа. Метрические задачи.	4	1		7	2			Проверочн ая работа
5	Определение формы геометрического образа по чертежу. Аксонометрическ ие проекции.	5	2		8, 9	4	4	2	Проверочн ая работа
6	Виды изделий и конструкторских документов.	6	2		10, 11, 12, 13, 14	14	1, 3, 4	7	Проверочн ая работа, Контрольн ая работа, Собеседов ание
	Промежуточная аттестация								Зачет с оценкой
	Всего		16			32		24	

4.2 Краткое содержание разделов и тем занятий

N₂	Тема	Краткое содержание
1	Основы построения	Основы построения геометрических образов.
	геометрических	Основные требования к чертежам. Правила
	образов. Компьютерная	оформления чертежей (Единая система
	графика	конструкторской документации. ГОСТы). Обзор
		графического редактора папоСАД. Основные
		возможности. Интерфейс, термины и
		определения.
2	Основы начертательной	Методы проецирования. Свойства. Эпюр Монжа.
	геометрии. Задание и	Задание и изображение на чертеже геометрических
	изображение	образов(ГО): прямых и плоскостей, поверхностей.
	геометрических образов	Признаки принадлежности.
	на ортогональном	
	чертеже.	

3	Основы начертательной	Позиционные задачи, Пересечение	
	геометрии.	геометрических образов. 1-ая и 2-ая ПЗ.	
	Позиционные задачи.	Алгоритмы решения	
4	Основы начертательной	Способ замены плоскостей проекций. 4 основные	
	геометрии. Способы	задачи.	
	преобразования эпюра		
	Монжа. Метрические		
	задачи.		
5	Определение формы	Построение третьей проекции детали по заданным	
	геометрического образа	проекциям с выполнением необходимых разрезов	
	по чертежу.	(ΓOCT 2.305-2008).	
	Аксонометрические	Построение прямоугольной аксонометрии детали с	
	проекции.	вырезом (ГОСТ 2.317-2011).	
6	Виды изделий и	Определения видов изделий ГОСТ 2.101-2016.	
	конструкторских	Основные виды конструкторских документов	
	документов.	ГОСТ. 2.102 2013, определения, назначения,	
		комплектность. Виды соединений. Соединения	
		резьбовые. Правила изображения и нанесения	
		обозначения резьбы на чертежах ГОСТ 2.311-68.	

4.3 Перечень лабораторных работ

Лабораторных работ не предусмотрено

4.4 Перечень практических занятий

No	Темы практических (семинарских) занятий	Кол-во академических часов
1	Методика создания точных чертежей с применением графического пакета nanoCAD. Слои. Команды рисования и редактирования, алгоритмы работы. Команды оформления чертежа: Размеры. Текст. Редактирование стилей.	2
2	Параллельное ортогональное проецирование. Эпюр Монжа. Эпюры точек, прямых общего и частного положения. относительное положение прямых.	2
3	Эпюр плоскости. Признак принадлежности. По двум заданным проекциям пирамиды построить третью и недостающие проекции сквозного отверстия. Работа выполняется в графическом редакторе.	2
4	Задание и изображение поверхностей. Линии каркаса поверхностей. Признак принадлежности. По двум заданным проекциям конуса вращения построить третью и недостающие проекции сквозного отверстия. Выполнить профильный разрез. Работа выполняется в графическом редакторе.	2

5	Построение линии пересечения поверхностей, одна из которых проецирующая.	2
6	Построение линии пересечения поверхностей общего положения. Способ плоскостей-посредников.	2
7	Построение трёх проекций линии сечения составного геометрического тела проецирующей плоскостью и определение натуральной величины фигуры сечения	2
8	Построение теоретического чертежа детали в трёх проекциях с вертикальными разрезами.	2
9	Построение модели детали и выполнение её прямоугольной аксонометрии с вырезом.	2
10	Виды соединений. Соединения резьбовые. Понятие резьбы. Классификация резьб. Основные параметры резьбы. Изображение резьбы и обозначение на чертежах. Основные элементы резьбы.	2
11	Эскизы. Определение. Назначение. Алгоритм выполнения. Построение эскиза детали типа "Крышка".	2
12	Сборочные чертежи общего вида. Определение. Содержание. Принятые упрощения. Позиционные номера. Размеры. Расчёт и построение в среде NanoCAD чертежа соединения шпилечного. Текстовый конструкторский документ "Спецификация" (ГОСТ 2.106-96)	4
13	Чтение сборочных чертежей общего вида. Деталирование - выполнение чертежей деталей по сборочному чертежу общего вида. Порядок выполнения. Работа с масштабом. Простановка размеров. Построение чертежа детали типа "Корпус" в среде NanoCAD.	4
14	Контрольная работа: "Выполнение сборочного чертежа по эскизам или рабочим чертежам деталей. Оформление спецификации". Работа выполняется в среде NanoCAD.	2

4.5 Самостоятельная работа

No	Вид СРС	Кол-во академических часов
1	Подготовка к зачёту	2
2	Подготовка к практическим занятиям (лабораторным работам)	5
3	Проработка разделов теоретического материала	2
4	Расчетно-графические и аналогичные работы	15

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: тренинг

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по практическим занятиям

1. Основы технического черчения в курсе инженерной графики [Электронный ресурс] : учебное пособие / И. И. Кострубова, М. А. Иванова, С. Б. Клименкова [и др.], 2020. - 186 с.

http://elib.istu.edu/viewer/view.php?file=/files3/er-24628.pdf

- 2. Верхотурова Е.В., Иванова М.А., Белокрылова О.В. Инженерная и компьютерная графика: практикум: в 2 ч. Ч. 1, 2023. 114.
- 3. Белокрылова О. В. Компьютерные технологии в инженерной графике : учебное пособие / О. В. Белокрылова, Л. Г. Климова, М. А. Иванова, 2020. 132 с. http://elib.istu.edu/viewer/view.php?file=/files3/er-23396.pdf
- 4. Кострубова И. И. Инженерная и компьютерная графика : электронный курс / И. И. Кострубова, 2020

https://el.istu.edu/course/view.php?id=1267

5.1.2 Методические указания для обучающихся по самостоятельной работе:

- 1. Инженерная и компьютерная графика. Теория построения чертежа : учеб. пособие / Е.В. Верхотурова и др. Иркутск : изд-во ИРНИТУ, 2023. 174 с.
- 2. Основы технического черчения в курсе инженерной графики [Электронный ресурс] : учебное пособие / И. И. Кострубова, М. А. Иванова, С. Б. Клименкова [и др.], 2020. 186 $^{\circ}$

http://elib.istu.edu/viewer/view.php?file=/files3/er-24628.pdf

3. Теоретическая информация по курсу. Инженерная и компьютерная графика// Электронное

обучение ИРНИТУ. - URL: https://el.istu.edu/course/view.php?id=1267

Режим доступа: для зарегистрир. пользователей.

Варианты заданий для выполнения самостоятельных графических работ. Инженерная и компьютерная графика // Электронное обучение ИРНИТУ.- URL:

https://el.istu.edu/course/view.php?id=1267

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 семестр 1 | Контрольная работа

Описание процедуры.

Студенту выдаётся индивидуальное задание: на формате А4 построить резьбовое соединение деталей. выполнить простые фронтальный и горизонтальный разрезы; оформить, как сборочный чертёж со спецификацией.

При выполнении работы соответствовать требованиям стандартов ЕСКД: ГОСТам 2.301...2.307-2011*, 2.311-68, 2.316-2008, 2.104-2006, 2.106-2019, 2.109-2023.

Время на подготовку 2 академических часа. Задание выполняется в графическом редакторе nanoCAD.

Критерии оценивания.

Отлично: чертёж выполнен без ошибок и оформлен в соответствии с требованиями перечисленных ГОСТов; учащийся отвечает на вопросы по работе, ориентируется в методах и способах построения.

Хорошо: учащийся демонстрирует осознанную переработку и анализ полученных данных, умеет на их основании решать графические задачи, выполнять графические работы без ошибок геометрических построений; допускает незначительные несоответствия стандартам оформления чертежей.

Удовлетворительно: графические задачи выполнены с небольшими ошибками геометрических построений и/или с некоторыми несоответствиями стандартам оформления чертежа.

Неудовлетворительно: информация отсутствует или слабо воспринимается учащимся, затруднена возможность анализа и переработки материала. Графическое задание выполнено с ошибками геометрических построений и грубых несоответствий оформления чертежа стандартам ЕСКД.

6.1.2 семестр 1 | Проверочная работа

Описание процедуры.

В качестве проверочной работы обучающийся выполняет графическую работу по индивидуальному варианту с использованием графического редактора nanoCAD или в ручной графике. Вариант работы выбирается согласно порядкового номера в списке группы. При выполнении проверочных графических работы обучающиеся должны

придерживаться требований, перечисленных в стандартах ЕСКД: ГОСТ 2.302; 2.303; 2.305; 2.306; 2.307; 2.311; 2.316; 2.104; 2.109 и т.д.

Перечень индивидуальных самостоятельных проверочных графических работ: В качестве проверочной работы обучающийся выполняет графическую работу по индивидуальному варианту в ручной графике или с использованием графического редактора nanoCAD. Вариант работы выбирается согласно порядкового номера списка группы. При выполнении проверочных графических работы обучающиеся должны придерживаться требований, перечисленных в стандартах ЕСКД: ГОСТы 2.301...2.307-2011*, 2.311-68, 2.316-2008, 2.104-2006, 2.106-2019, 2.109-2023.

Перечень индивидуальных самостоятельных проверочных графических работ:

- 1. Пирамида с отверстием
- 2. Конус с отверстием
- 3. Эпюр№3
- 4. Эпюр №4
- 5. Теоретический чертеж детали в трёх проекциях с вертикальными разрезами
- 6. Модель и изометрическая проекция детали
- 7. Эскиз детали
- 8. Сборочый чертёж. Спецификация. Расчёт и соединение шпилечное.
- 9. Деталирование сборочного чертежа

Критерии оценивания.

Отлично: Графическая задача решена верно. При решении графической задачи просматривается алгоритм построения. Изображения построены аккуратно и с соблюдением всех норм и правил оформления чертежа согласно стандартов ЕСКД. Хорошо: Графическая задача решена верно. При решении графической задачи просматривается алгоритм построения. Возможны небольшие отклонения от стандартов ЕСКД. Масштаб изображения не подходит под выбранный формат.

Удовлетворительно: Графическая задача решена верно, возможны небольшие неточности построения. При решении графической задачи не просматривается алгоритм построения. Возможны отклонения от стандартов ЕСКД. Масштаб изображения не подходит под выбранный формат.

Неудовлетворительно: Имеются значительные ошибки при решении графической задачи. На чертеже не просматривается алгоритм построения. Чертеж не оформлен согласно требований стандартов ЕСКД.

6.1.3 семестр 1 | Собеседование

Описание процедуры.

Обучающему предлагается ответить на вопросы по теме чертежа: объяснить, почему в одних случаях на чертеже при указании размера выбран символ диаметра, а в других перед размерным числом указана буква «М». В чём особенность простановки размеров трубной и прямоугольной нестандартной резьбы;

- показать на чертеже деталь с внешней/внутренней резьбой;
- рассказать, в каком случае возможно совмещение двух конструкторских документов: сборочного чертежа и спецификации;
- рассказать, какие разделы спецификации обязательны для включения в документ;
- объяснить, в каком порядке заполняются разделы спецификации;
- рассказать, что символизирует код «СБ» после обозначения чертежа;
- объяснить, какие изделия в спецификации помещают в раздел «Детали»;
- в каком случае в спецификации обязателен раздел "Документация".
- 8.2. Обучающемуся предлагается выполнить геометрические построения: При выполнении чертежа средствами компьютерной графики дополнительно задаются вопросы о выбранных командах и приёмах построения.

Критерии оценивания.

Отлично: Отличная степень владения теоретической и практической информацией по теме проекционного

построения рабочих и сборочных чертежей. Уверенное использование графического редактора nanoCAD для построения чертежей.

Хорошо: Хорошая степень владения теоретической и практической информацией по теме проекционного построения рабочих и сборочных чертежей. Уверенное использование графического редактора nanoCAD для построения чертежей.

Удовлетворительно: Не полностью владеет теоретической и практической информацией по теме проекционного построения рабочих и сборочных чертежей. Испытывает затруднения при использовании графического редактора nanoCAD для построения чертежей.

Неудовлетворительно: Не владеет теоретической и практической информацией по теме проекционного построения рабочих и сборочных чертежей. Испытывает большие затруднения при использовании графического редактора nanoCAD для построения чертежей.

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
ОПК ОС-1.3	Демонстрирует знания основных методов и средств построения и чтения чертежей	Устное собеседование по выполненным индивидуальным графическим заданиям.
ОПК ОС-4.1	Демонстрирует знания основных методов и средств построения, чтения и оформления чертежей различного уровня сложности и назначения, поиска и оформления проектноконструкторской документации в соответствии с требованиями стандартов ЕСКД	Устное собеседование по выполненным индивидуальным графическим заданиям. Зачёт с оценкой

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 1, Типовые оценочные средства для проведения дифференцированного зачета по дисциплине

6.2.2.1.1 Описание процедуры

Дифференцированный зачет проводится при завершении изучения дисциплины, осуществляется с помощью собеседования по теме индивидуальных графических заданий, выполняемых обучающимися в течении учебных семестров. Так же обучающемуся предлагается в присутствии преподавателя на своем варианте задания выполнить построение одной - двух графических операций. К зачету допускаются студенты, самостоятельно выполнившие все виды контактной работы в полном объеме академических часов и успешно прошедшие все формы текущего контроля

Пример задания:

- 1. Пирамида с отверстием
- 1.1. Обучающемуся предлагается ответить на вопросы по теме чертежа:
- показать на чертеже фронтальную, горизонтальную, профильную проекцию пирамиды
- показать основные элементы каркаса пирамиды: грани, ребра, вершины
- показать, какие грани занимают в пространстве общее положение, честное положение относительно плоскостей проекций.
- показать, какие ребра занимают в пространстве общее положение, частное положение

относительно плоскостей проекций

- рассказать, как на основании метода конкурирующих точек определялась видимость линии отверстия
- рассказать, по какому принципу выполнялся разрез на виде слева
- 1.2. Обучающемуся предлагается выполнить геометрические построения:
- достроить недостающую проекцию прямой (ровня/проецирующей/общего положения), принадлежащей грани
- построить проекцию точки, принадлежащей грани пирамиды
- провести проецирующую плоскость/плоскость уровня, пересекающую пирамиду
- 2. Конус с отверстием
- 2.1. Обучающемуся предлагается ответить на вопросы по теме чертежа:
- на чертеже показать фронтальную, горизонтальную, профильную проекцию конуса;
- назвать плоскость частного положения, образующую грани отверстия;
- показать основные элементы, задающие конус на чертеже: основание, образующие, очерковые, вершину
- рассказать, какое положение в пространстве занимает основание конуса
- рассказать, по какому принципу определялась видимость линии сечения
- 2.2. Обучающемуся предлагается выполнить геометрические построения
- построить параллель конуса
- построить проекцию точки, принадлежащей образующей конуса/направляющей конуса
- через проекции точек построить линию, принадлежащую поверхности конуса
- 3. Эпюр №3
- 3.1.Обучающемуся предлагается ответить на вопросы по теме чертежа:
- на чертеже показать фронтальную, горизонтальную, профильную проекцию конуса
- назвать плоскость частного положения, пересекающую конус
- показать основные элементы, задающие конус на чертеже: основание, образующие, очерковые, вершину
- рассказать, какое положение в пространстве занимает основание конуса
- рассказать, по какому принципу определялась видимость линии сечения
- 3.2. Обучающемуся предлагается выполнить геометрические построения
- построить параллель конуса/сферы
- построить проекцию точки, принадлежащей поверхности конуса
- через проекции точек построить линию, принадлежащую поверхности конуса
- 4. Эпюр №4
- 4.1. Обучающемуся предлагается ответить на вопросы по теме чертежа:
- назвать поверхности, изображенные на чертеже
- на чертеже показать фронтальную, горизонтальную, профильную проекцию поверхности
- показать проецирующую / непроецирующую поверхность
- показать основные элементы, задающие одну из поверхностей на чертеже: основание, образующие, очерковые, вершину
- рассказать, какое положение в пространстве занимает основание поверхности
- рассказать, по какому принципу определялась видимость линии пересечения
- 4.2. Обучающемуся предлагается выполнить геометрические построения
- построить параллель конуса или сферы
- построить образующую цилиндра
- построить проекцию точки, принадлежащей образующей конуса/направляющей конуса/образующей цилиндра/ основанию цилиндра
- 5. Теоретический чертеж детали в трёх проекциях с вертикальными разрезами
- 5.1. Обучающемуся предлагается ответить на вопросы по теме чертежа:
- показать на чертеже фронтальную, горизонтальную, профильную проекцию детали
- обосновать построение разрезов

- показать какой-либо из элементов детали на всех плоскостях проекций
- рассказать, из каких простейших поверхностей состоит деталь
- 6. Модель и изометрическая проекция детали
- 6.1. Обучающемуся предлагается ответить на вопросы по теме чертежа:
- объяснить, почему в основной надписи не заполняется графа «Масштаб»
- рассказать, из каких простейших поверхностей состоит деталь
- назвать способы построения выреза ¼ при помощи графического редактора nanoCAD
- объяснить необходимость использования исполнения для построения выреза детали
- рассказать чем отличается модель детали от её изометрии
- 7. Эскиз детали
- 7.1. Обучающемуся предлагается ответить на вопросы по теме чертежа:
- дать определение эскиза
- объяснить, почему в основной надписи не заполняется графа «Масштаб»
- объяснить, почему в одних случаях на чертеже при указании размера выбран символ диаметра, а в других перед размерным числом указана буква «М»
- объяснить, почему для изображения выбрано определенное количество проекций
- показать на чертеже изображение внутренней / внешней резьбы
- рассказать, должен ли изображаться на производственный или эксплуатационный брак детали
- 8. Сборочый чертёж. Спецификация. Расчёт и построение чертежа "Соединение шпилечное"
- 8.1. Обучающемуся предлагается ответить на вопросы по теме чертежа:
- сказать, чему равна длина шпильки, длина резьбового конца шпильки, диаметр шпильки
- объяснить, почему в одних случаях на чертеже при указании размера выбран символ диаметра, а в других перед размерным числом указана буква «M»
- показать на чертеже шпильку/шайбу/гайку
- показать на чертеже деталь с внешней/внутренней резьбой
- рассказать, какие разделы спецификации обязательны для включения в документ
- объяснить, в каком порядке заполняются разделы спецификации
- рассказать, что символизирует код «СБ» после обозначения чертежа
- объяснить, какие изделия в спецификации помещают в раздел «Детали»
- в каком случае в спецификации обязателен раздел "Документация"
- 9. Деталирование сборочного чертежа
- 9.1. Обучающемуся предлагается ответить на вопросы по теме чертежа:
- рассказать, из каких простейших геометрических тел состоит деталь
- рассказать о возможных способах построения цилиндрических/ призматических поверхностей
- объяснить, какая проекция должна быть выбрана в качестве главной на рабочем чертеже, по какой причине
- обосновать, почему для рабочего чертежа деталей выбраны именно такие виды, разрезы, сечения

6.2.2.1.2 Критерии оценивания

Отлично	Хорошо	Удовлетворительн	Неудовлетворительно
O13111-4110		0	псудовлетворительно
Демонстрирует	Хорошие знания	Не полностью	Не знает методов и
отличные знания	основных методов	владеет	средств построения,
основных методов	и средств	теоретической и	чтения
и средств	построения,	практической	и оформления
построения и	чтения	информацией по	чертежей различного
чтения чертежей.	и оформления	теме проекционного	уровня сложности и

П	U	_	
Демонстрирует	чертежей	построения рабочих	назначения,
знания основных	различного уровня	и сборочных	поиска и оформления
методов и средств	сложности и	чертежей.	проектно-
построения,	назначения,	Испытывает	конструкторской
чтения	поиска и	затруднения при	документации в
и оформления	оформления	использовании	соответствии с
чертежей	проектно-	графического	требованиями
различного уровня	конструкторской	редактора nanoCAD	стандартов ЕСКД.
сложности и	документации в	для построения	Испытывает большие
назначения,	соответствии с	чертежей.	затруднения при
поиска и	требованиями		использовании
оформления	стандартов ЕСКД		графического
проектноконструк			редактора nanoCAD
торской			для построения
документации в			чертежей.
соответствии с			
требованиями			
стандартов ЕСКД			

7 Основная учебная литература

- 1. Чекмарев А. А. Инженерная графика. Машиностроительное черчение [Электронный ресурс]: учебник / А. А. Чекмарев, 2023. 396.
- 2. Дегтярев В. М. Инженерная и компьютерная графика: учеб. для студентов вузов по техническим направлениям / В. М. Дегтярев, В. П. Затыльникова, 2012. 238.
- 3. Чекмарев А. А. Инженерная графика : справочные материалы / А. А. Чекмарев, В. К. Осипов, 2002. 412.

8 Дополнительная учебная литература и справочная

- 1. Левицкий В. С. Машиностроительное черчение и автоматизация выполнения чертежей: учебник для бакалавров / В. С. Левицкий, 2013. 435.
- 2. Федоренко В. А. Справочник по машиностроительному черчению / В. А. Федоренко, А. И. Шошин; под ред. Г. Г. Поповой, 2009. 416.
- 3. Чекмарев А. А. Справочник по машиностроительному черчению / А. А. Чекмарев, В. К. Осипов, 2001. 492 [3].

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/
- 3. https://www.nanocad.ru/support/education/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/

- 11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем
- 1. NanoCAD + NanoCAD СПДС 21
- 2. Microsoft Office Standard 2010_RUS_ поставка 2010_(артикул 021-09683)

12 Материально-техническое обеспечение дисциплины

- 1. 1. Узлы, сборочные единицы, детали, измерительный инструмент для измерения деталей
- 2. 2. Компьютерный класс