Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Структурное подразделение «Материаловедения, сварочных и аддитивных технологий»

УТВЕРЖДЕНА:

на заседании кафедры Протокол №<u>5</u> от <u>21 января 2025</u> г.

Рабочая программа дисциплины

«МАТЕРИАЛЫ ДЛЯ АДДИТИВНЫХ ТЕХНОЛОГИЙ»
Направление: 15.04.01 Машиностроение
Цифровые, аддитивные технологии в сварочном производстве
Квалификация: Магистр
Φοργα οδυγγουνίαι ονίνοα
Форма обучения: очная

Документ подписан простой электронной подписью

Составитель программы: Николаева Елена

Павловна

Дата подписания: 17.06.2025

Документ подписан простой электронной подписью

Утвердил и согласовал: Балановский Андрей

Евгеньевич

Дата подписания: 18.06.2025

1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

1.1 Дисциплина «Материалы для аддитивных технологий» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции	
ОПК-1 Способен формулировать цели и задачи		
исследования, выявлять приоритеты решения задач,	ОПК-1.2	
выбирать и создавать критерии оценки результатов	O11K-1.2	
исследования		
ОПК-10 Способен разрабатывать методы		
стандартных испытаний по определению физико-	ОПК-10.1	
механических свойств и технологических показателей	OHK-10.1	
используемых материалов и готовых изделий		

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ОПК-10.1	Знает основные методы стандартных испытаний по определению физико- механических свойств и технологических показателей материалов, используемых в аддитивных технологиях	Знать Знать виды материалов, применяемых в аддитивных технологиях Уметь Уметь определять критерии оценки свойств материалов, применяемых в аддитивных технологиях. Владеть Владеть навыками формулировать задачи исследования.
ОПК-1.2	Способен формулировать цели и задачи исследования материалов для аддитивных технологий, выбирать и создавать критерии оценки результатов их исследования	Знать Знать основные физикомеханические свойства и технологические показатели материалов, предназначенных для аддитивных технологий, методы стандартных испытаний. Уметь Уметь применять нормативные документы при выборе и разработке методов стандартных испытаний по определению физико-механических свойств и технологических показателей материалов для аддитивных технологий. Владеть Владеть навыками определения основных физикомеханических свойств и технологитеских показателей материалов, предназначенных для аддитивных технологий.

2 Место дисциплины в структуре ООП

Изучение дисциплины «Материалы для аддитивных технологий» базируется на результатах освоения следующих дисциплин/практик: Нет

Дисциплина является предшествующей для дисциплин/практик: «Методы контроля и диагностики в аддитивном производстве»

3 Объем дисциплины

Объем дисциплины составляет – 4 ЗЕТ

Вид учебной работы	Трудоемкость в академических часах (Один академический час соответствует 45 минутам астрономического часа)		
	Всего	Семестр № 1	
Общая трудоемкость дисциплины	144	144	
Аудиторные занятия, в том числе:	60	60	
лекции	12	12	
лабораторные работы	24	24	
практические/семинарские занятия	24	24	
Самостоятельная работа (в т.ч. курсовое проектирование)	84	84	
Трудоемкость промежуточной аттестации	0	0	
Вид промежуточной аттестации (итогового контроля по дисциплине)	Зачет	Зачет	

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр № 1

	Наименование	Виды контактной работы				CPC		Форма		
l No l		Лек	ции	Л	[P	П3(0	CEM)		PC	Форма
п/п	раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	No	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Методы аддитивных технологий	1	2					2, 5, 6	9	Тест
2	Классификация материалов для аддитивных технологий, область применения	2	2					2, 5, 6	9	Тест
3	Методы исследования свойств исходного сырья для аддитивного производства и деталей, полученных ЗД	3	4	1, 2	8	1, 2,	12	1, 2, 3, 4, 5, 6	29	Тест

	печатью									
4	Структура, свойства и способы изменения свойства изделий полученных с помощью аддитивных технологий	4	4	3, 4, 5, 6	16	4, 5, 6	12	1, 2, 3, 4, 5, 6	37	Тест
	Промежуточная аттестация									Зачет
	Всего		12		24		24		84	

4.2 Краткое содержание разделов и тем занятий

Семестр № 1

N₂	Тема	Краткое содержание
1	Методы аддитивных	Назначение и область применения современных
	технологий	способов производства изделий методом ЗД
		печати. Преимущества, недостатки и особенности
		печати деталей лазером и электронно-лучевым
		способом. Печать полимерными материалами
		экструзией и лазерным сплавлением. Возможности
		армирования при трехмерной печати.
2	Классификация	Основные материалы, используемые для
	материалов для	аддитивных технологий. Особенности
	аддитивных	металлических порошков. Используемые
	технологий, область	полимерные материалы и материалы для
	применения	армирования. Композиционные материалы, состав,
		структура и свойства.
3	Методы исследования	Способы изучения свойств как исходного сырья
	свойств исходного	для аддитивных технологий, так и напечатанных
	сырья для аддитивного	изделий. Прочностные, пластические,
	производства и деталей,	триботехнические свойства. Методы измерения
	полученных ЗД	механических свойств.
	печатью	
4	Структура, свойства и	Структура и свойства материалов для аддитивных
	способы изменения	технологий. Особенности порошковых
	свойства изделий	материалов, параметры порошков для аддитивных
	полученных с помощью	технологий. Металлические и неметаллические
	аддитивных технологий	материалы для аддитивных технологий. Методы
		исследования структуры порошковых материалов
		и напечатанных изделий.

4.3 Перечень лабораторных работ

Семестр $N_{\mathfrak{D}}$ <u>1</u>

N₂	Наименование лабораторной работы	Кол-во академических часов
1	ЛР-1	4
2	ЛР-2	4

3	ЛР-3	4
4	ЛР-4	4
5	ЛР-5	4
6	ЛР-6	4

4.4 Перечень практических занятий

Семестр № 1

N₂	Темы практических (семинарских) занятий	Кол-во академических часов
1	ПР-1	4
2	ПР-2	4
3	ПР-3	4
4	ПР-4	4
5	ПР-5	4
6	ПР-6	4

4.5 Самостоятельная работа

Семестр № 1

Nº	Вид СРС	Кол-во академических часов
1	Оформление отчетов по лабораторным и практическим работам	24
2	Подготовка к зачёту	4
3	Подготовка к практическим занятиям	12
4	Подготовка к практическим занятиям (лабораторным работам)	12
5	Проработка разделов теоретического материала	16
6	Прохождение массового открытого онлайн-курса	16

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: Работа в малых группах; Дискуссия

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по практическим занятиям

Николаева Е.П. Методические указания по освоению дисциплины «Новые конструкционные материалы». Иркутск, 2018. (электронный ресурс). er-20302.

5.1.2 Методические указания для обучающихся по лабораторным работам:

Николаева Е.П. Методические указания по освоению дисциплины «Новые конструкционные материалы». Иркутск, 2018. (электронный ресурс). er-20302.

5.1.3 Методические указания для обучающихся по самостоятельной работе:

Николаева Е.П. Методические указания по освоению дисциплины «Новые конструкционные материалы». Иркутск, 2018. (электронный ресурс). er-20302.

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 семестр 1 | Тест

Описание процедуры.

При прохождении компьютерного тестирования задания для каждого студента выбираются программой случайным образом из общего объема тестовых заданий по дисциплине. Типы вопросов теста: множественный выбор; верно-неверно; вопросы на соответствие; выбор пропущенных слов.

Критерии оценивания.

Тест сдан при условии, если набранные студентом баллы не меньше проходного балла (60%). Шкала оценивания теста: "отлично" - 90...100% правильных ответов; "хорошо" - 80...89%; "удовлетворительно" - 61...79%.

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
ОПК-10.1	Демонстрирует способность правильно формулировать цели и задачи исследования материалов, применяемых в аддитивных технологиях, выбирать и создавать критерии оценки результатов их исследования	Устный опрос или тестирование
ОПК-1.2	Демонстрирует умение применять нормативные документы при выборе и разработке методов стандартных испытаний по определению физикомеханических свойств и технологических показателей материалов для аддитивных технологий	Устный опрос или тестирование

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 1, Типовые оценочные средства для проведения зачета по дисциплине

6.2.2.1.1 Описание процедуры

Для подготовки к зачёту студентам выдаётся список вопросов.

Описание процедуры зачёта в форме устного опроса: студенту предлагается ответить на один вопрос по каждому разделу дисциплины. В зависимости от ответа студента преподаватель может задать дополнительные вопросы, связанные с темами дисциплины. В случае допущения студентом неточности при ответе на контрольный вопрос преподаватель формулирует правильный ответ. При неправильном ответе студенту предлагается устранить недостатки в подготовке, после чего процедура устного опроса повторяется. Вопросы из разделов дисциплины, по которым были успешно выполнены тесты, исключаются из процедуры зачёта.

Описание процедуры зачёта в форме компьютерного тестирования: перед компьютерным тестированием рекомендуется выполнить все виды СРС, предусмотренные рабочей программой дисциплины. Зачёт в форме компьютерного тестирования проводится в установленный для зачёта день и время в режиме реального времени. Итоговый тест содержит 15...20 вопросов по всему курсу. Тестирование проводится с ограничением времени.

6.2.2.1.2 Критерии оценивания

Зачтено Не зачтено

Хорошо усвоил программный материал и грамотно его излагает; свободно и уверенно оперирует представленной информацией.

При ответе подробно излагает материал, дает правильное определение основных понятий; обнаруживает понимание материала, может обосновать свои суждения, применить знания на практике, привести необходимые примеры из учебной литературы и/или составленные самостоятельно.

Излагает материал последовательно и правильно с точки зрения норм литературного языка.

Знает общие принципы классификации материалов, применяемых в аддитивных технологиях.

Владеет навыками сопоставления и анализа результатов исследований. Свободно и уверенно оперирует представленной информацией. Участвует в коллективных работах и в обсуждениях полученных результатов. Отвечает на контрольные вопросы. Демонстрирует умение применять нормативные документы при выборе и разработке методов стандартных испытаний по определению физико-

Не усвоил программный материал и неграмотно его излагает; неуверенно оперирует представленной информацией. При ответе обнаруживает незнание большей части соответствующего вопроса, допускает ошибки в формулировке определений и правил, искажающие их смысл.

Не может обосновать свои суждения, применить знания на практике, привести необходимые примеры из учебной литературы и/или составленные самостоятельно.

Излагает материал беспорядочно и неуверенно.

Не знает общих принципов классификации материалов, применяемых в аддитивных технологиях.

Не владеет навыками сопоставления и анализа результатов исследований. Неуверенно оперирует представленной информацией.

Не участвует в коллективных работах и в обсуждениях полученных результатов. Не отвечает на контрольные вопросы. Не демонстрирует умение применять нормативные документы при выборе и разработке методов стандартных испытаний по определению физико-

механических свойств и технологических показателей материалов для аддитивных технологий.

Демонстрирует способность правильно формулировать цели и задачи исследования материалов, применяемых в аддитивных технологиях, выбирать и создавать критерии оценки результатов их исследования.

механических свойств и технологических показателей материалов для аддитивных технологий.

Не демонстрирует способность правильно формулировать цели и задачи исследования материалов, применяемых в аддитивных технологиях, выбирать и создавать критерии оценки результатов их исследования.

7 Основная учебная литература

- 1. Аэрокосмические материалы [Электронный ресурс] : учебное пособие / А. В. Савилов, Е. П. Николаева, С. Н. Сорокова [и др.], 2021. 246.
- 2. Панов Владимир Сергеевич. Технология и свойства спеченных твердых сплавов и изделий из них: [Учеб. пособие для вузов по специальности 110800-Порошковая металлургия, композиц. материалы, покрытия] / В. С. Панов, А. М. Чувилин, 2001. 426.
- 3. Николаева Е. П. Материалы для аддитивных технологий : электронный курс / Е. П. Николаева, 2023

8 Дополнительная учебная литература и справочная

- 1. Гусев А. И. Наноматериалы, наноструктуры, нанотехнологии / А. И. Гусев, 2007. 414.
- 2. Аддитивные технологии в производстве изделий аэрокосмической техники : учебное пособие для вузов / А. Л. Галиновский, Е. С. Голубев, Н. В. Коберник, А. С. Филимонов ; ред. А. Л. Галиновский, 2021. 115.
- 3. Либенсон Герман Абрамович. Процессы порошковой металлургии : учеб. для вузов по специальности 110800 "Порошковая металлургия, композиц. материалы, покрытия": [В 2т.]. Т. 1. Производство металлических порошков / Γ . А. Либенсон, В. Ю. Лопатин, Γ . В. Комарницкий, 2001. 366.
- 4. Ляпков А. А. Современные аддитивные технологии : учебное пособие / А. А. Ляпков, 2024. 234.
- 5. Ляпков А. А. Полимерные аддитивные технологии : учебное пособие / А. А. Ляпков, А. А. Троян, 2022. 120.
- 6. Тарасова Т. В. Аддитивное производства: учебное пособие / Т. В. Тарасова, 2022. 196.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/

11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем

12 Материально-техническое обеспечение дисциплины

- 1. 1166 Микроскоп МИМ-7
- 2. 1160 Микроскоп МИМ-7
- 3. 12859 Микроскоп МПСУ-1
- 4. 1164 Микроскоп МИМ-7
- 5. 1158 Микроскоп МИМ-7
- 6. 1159 Микроскоп МИМ-7
- 7. 1161 Микроскоп МИМ-7
- 8. 1284 Микроскоп МИМ-8
- 9. 1150 Микроскоп МИМ-8м
- 10. 1151 Микроскоп МИМ-8м
- 11. 1167 Микроскоп МИМ-7
- 12. 11505 Твердомер ТШ-2
- 13. 5944 Микроскоп МИМ-7
- 14. 5943 Микроскоп МИМ-7
- 15. 5945 Микроскоп МИМ-7
- 16. Печь муфельная ЭКПС 10
- 17. 1163 Микроскоп МИМ-7
- 18. Печь муфельная ПМ-8 (6.5л,550-900С)
- 19. 1168 Микроскоп МИМ-7
- 20. Микроскоп Микромед Полар-1
- 21. Электропечь муфельная ЭКПС-10 СНОЛ
- 22. Твердомер стационарный универсальный HBRV-187.5
- 23. Микроскоп цифровой стереоскопический Микромед МС-2
- 24. Проектор мультимедиа BenQ MW621ST(с экраном 2*2м)
- 25. Микроскоп Микромед МЕТ-2

26. Микроскоп цифровой стационарный Микромед LCD