Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Структурное подразделение «Инженерной и компьютерной графики»

УТВЕРЖДЕНА:

на заседании кафедры Протокол N 2 7 от 05 февраля 2025 г.

Рабочая программа дисциплины

«ИНЖЕНЕРНАЯ И КОМПЬЮТЕРНАЯ ГРАФИКА»
Направление: 15.03.04 Автоматизация технологических процессов и производств
Системы и средства автоматизации в промышленности
Квалификация: Бакалавр
Форма обучения: заочная

Документ подписан простой электронной подписью

Составитель программы: Кострубова Ирина

Ивановна

Дата подписания: 18.06.2025

Документ подписан простой электронной подписью

Утвердил: Перелыгина Александра Юрьевна

Дата подписания: 18.06.2025

1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

1.1 Дисциплина «Инженерная и компьютерная графика» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ОПК ОС-1 Способность применять	
естественнонаучные и общеинженерные знания,	ОПК ОС-1.3
методы математического анализа и моделирования в	Olik OC-1.5
профессиональной деятельности	
ОПК ОС-4 Способность работать с нормативно-	
технической документацией, применять ее в	ОПК ОС-4.1
профессиональной деятельности	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ОПК ОС-1.3	Оперирует методами изображения и моделирования геометрических форм и предметов, способами решения графических задач, выполняет и читает чертежи и другую конструкторскую документацию	Знать методы изображения пространственных объектов и моделирования геометрических форм и предметов. Уметь анализировать и применять основные алгоритмы графических способов для решения практических задач в сфере профессиональной деятельности. Владеть навыками оформления проектной и конструкторской документации в соответствии с требованиями единой системы конструкторской документации.
ОПК ОС-4.1	Оперирует положениями и требованиями ЕСКД в отношении конструкторской документации, обладает навыками поиска требуемых стандартов и других нормативно-технических документов (НТД), применения требований НТД в профессиональной деятельности	Знать положения и требования ЕСКД в отношении конструкторской документации при решении задач в сфере профессиональной деятельности, а также пакеты программ автоматизированного проектирования и черчения Уметь анализировать и рационально применять стандарты и другие нормативно-технических документы в соответствии с требованиями нтд, проводить обоснованный выбор средств компьютерной графики при выполнении конструкторских,

	технологиче	ских и	други	X	
	документов.				
	Владеть нав	ыками	анали	за и	И
	выбора	на	его	основе	
	пакет	a			
	программ	автом	атизир	ованного)
	проектирования и черчения.				

2 Место дисциплины в структуре ООП

Изучение дисциплины «Инженерная и компьютерная графика» базируется на результатах освоения следующих дисциплин/практик: Нет

Дисциплина является предшествующей для дисциплин/практик: «Метрология, стандартизация и сертификация», «Основы проектной деятельности», «Прикладная механика», «Проектная деятельность», «Средства технологических измерений», «Теоретическая механика», «Технологические процессы переработки углеводородного сырья», «Трехмерное моделирование»

3 Объем дисциплины

Объем дисциплины составляет – 4 ЗЕТ

	Трудоемкость в академических часах			
	(Один академический час соответствует 45			
Вид учебной работы	минутам астрономическ	кого часа)		
	Всего	Учебный год №		
	DCel 0	1		
Общая трудоемкость дисциплины	144	144		
Аудиторные занятия, в том числе:	18	18		
лекции	6	6		
лабораторные работы	0	0		
практические/семинарские занятия	12	12		
Самостоятельная работа (в т.ч.	122	122		
курсовое проектирование)	122	122		
Трудоемкость промежуточной	4	4		
аттестации	4	7		
Вид промежуточной аттестации				
(итогового контроля по дисциплине)	Зачет с оценкой	Зачет с оценкой		

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Учебный год № <u>1</u>

Nº	Наименование	Лек	Виды контактной работы Лекции ЛР ПЗ(СЕМ)			СРС		Форма		
п/п	раздела и темы дисциплины	No	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Основы	1	1			1, 2,	4	1	15	Проверочн
	построения					3				ая работа,
	геометрических									Тест

	образов. Правила оформления чертежей. Компьютерная графика								
2	Основы начертательной геометрии. Позиционные задачи. Способы преобразования эпюра Монжа	2	1		4, 5	4	1, 2	24	Проверочн ая работа, Тест
3	Определение формы геометрического образа по чертежу. Аксонометрическ ие проекции	4	1		6	2	1, 2	29	Проверочн ая работа, Тест
4	Чертежи резьбовых деталей и соединений. Типы конструкторской документации	5	2		7	1	1, 2	31	Проверочн ая работа, Тест
5	Деталирование сборочных чертежей общего вида	3	1		8	1	1, 2	23	Проверочн ая работа, Тест
	Промежуточная аттестация							4	Зачет с оценкой
	Всего		6			12		126	

4.2 Краткое содержание разделов и тем занятий

Учебный год № <u>1</u>

No	Тема	Краткое содержание
1	Основы построения	Методы проецирования. Свойства. Эпюр Монжа.
	геометрических	Координатные расстояния. Задание и изображение
	образов. Правила	на чертеже геометрических образов(ГО). Признаки
	оформления чертежей.	принадлежности. Основные требования к
	Компьютерная графика	чертежам. Правила оформления чертежей. Единая
		система конструкторской документации (ЕСКД).
		ГОСТы. Обзор графического редактора nanoCAD.
		Основные возможности. Интерфейс, термины и
		определения
2	Основы начертательной	Пересечение геометрических образов. 1-ая и 2-ая
	геометрии.	ПЗ. Алгоритмы решения. Способ замены
	Позиционные задачи.	плоскостей проекций. 4 основные задачи.
	Способы	Определение натуральной величины фигуры
	преобразования эпюра	сечения.
	Монжа	
3	Определение формы	Построение третьей проекции детали по заданным
	геометрического образа	проекциям с выполнением необходимых разрезов.
	по чертежу.	Тест
	Аксонометрические	Аксонометрические проекции. Изометрические

	проекции	проекции. Построение выреза 1/4. Простановка		
		размеров для изометрической проекции.		
4	Чертежи резьбовых	Сведения о резьбе: термины и определения (ГОСТ		
	деталей и соединений.	11708 – 82);		
	Типы конструкторской	ГОСТ 2.311-2011 Изображение резьбы. Основные		
	документации	определения. Классификация. Условности и		
		упрощения. Соединение резьбовое.		
		Типы конструкторской документации: Сборочный		
		чертеж ГОСТ 2.102-2013. Расчёт и построение		
		"Соединение шпилечное" Спецификация ГОСТ		
		2.106-2019.Рабочий чертеж. Эскизы.		
5	Деталирование	Чтение сборочных чертежей общего вида.		
	сборочных чертежей	Выполнение чертежей деталей по сборочному		
	общего вида	чертежу общего вида.		

4.3 Перечень лабораторных работ

Лабораторных работ не предусмотрено

4.4 Перечень практических занятий

Учебный год № <u>1</u>

Nº	Темы практических (семинарских) занятий	Кол-во академических часов
1	Методы центрального и ортогонального параллельного проецирования. Свойства. Эпюр Монжа. Задание и изображение на чертеже геометрических образов(ГО): прямых и, плоскостей (общего и частного положения), поверхности. Признаки принадлежности. Построение прямых частного положения в плоскости общего положения (1/2 Эпюра №1).	1
2	Изображение линейчатых поверхностей. Линии каркаса. Признак принадлежности". По двум заданным проекциям пирамиды построить третью и недостающие проекции сквозного отверстия. Выполнить профильный разрез.	2
3	Изображение поверхностей вращения. Линии каркаса. Признак принадлежности. По двум заданным проекциям конуса вращения построить третью и недостающие проекции сквозного отверстия. Выполнить профильный разрез	1
4	Позиционные задачи (ПЗ). Алгоритмы решения задач. 1-ая ПЗ: построение точки пересечение прямой с плоскостью (Эпюр №1). 2-ая ПЗ: построение трёх проекций линии сечения составного геометрического тела проецирующей плоскостью и определение натуральной величины фигуры сечения	2
5	Позиционные задачи: построение линии	2

	пересечения поверхностей, одна из которых	
	проецирующая и поверхностей общего	
	положения. Эпюр №4.	
	По двум заданным проекциям детали построить	
	вид слева, выполнить необходимые разрезы.	
6	Аксонометрические проекции. По заданным	2
	проекциям детали построить её прямоугольную	
	аксонометрию с вырезом.	
	Расчёт шпилечного соединения и выполнение	
7	чертежа и спецификации "Соединение	1
	шпилечное".	
	Чтение сборочных чертежей общего вида.	
8	Выполнение чертежей деталей типа "Корпус" и	1
	"Крышка" по сборочному чертежу общего вида.	

4.5 Самостоятельная работа

Учебный год № <u>1</u>

Nº	Вид СРС	Кол-во академических часов
1	Проработка разделов теоретического материала	66
2	Расчетно-графические и аналогичные работы	56

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: Дистанционное обучение, видеолекции, видеоконференции

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по практическим занятиям

- 1. Теоретическая информация по курсу. Инженерная и компьютерная графика// Электронное обучение ИРНИТУ. URL: https://el.istu.edu/course/view.php?id=1379. Варианты и примеры заданий для выполнения самостоятельных графических работ. Режим доступа: для зарегистрир. пользователей.
- 2. Основы технического черчения в курсе инженерной графики [Электронный ресурс] : учебное пособие / И. И. Кострубова, М. А. Иванова, С. Б. Клименкова [и др.], 2020. 186 с.

http://elib.istu.edu/viewer/view.php?file=/files3/er-24628.pdf

5.1.2 Методические указания для обучающихся по самостоятельной работе:

1. Теоретическая информация по курсу. Инженерная и компьютерная графика// Электронное обучение ИрНИТУ. - URL: https://el.istu.edu/course/view.php?id=1379. Режим доступа: для зарегистрир. пользователей.

Варианты и примеры заданий для выполнения самостоятельных графических работ по дисциплине Инженерная и компьютерная графика

2. Примеры выполнения графических работ. Инженерная и компьютерная графика

//Электронное обучение ИРНИТУ.- URL:https://el.istu.edu/course/view.php?id=1267. Режим доступа: для зарегистрир. пользователей

3. Кузнецова Г.В., Кострубова И.И., Иванова М.А., Клименкова С.Б., Верхотурова Е.В., Кочнева А.В. Начертательная геометрия : учеб. пособие. – Иркутск : Изд-во ИРНИТУ, 2019. – 168 с.

- 6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине
- 6.1 Оценочные средства для проведения текущего контроля
- 6.1.1 учебный год 1 | Проверочная работа

Описание процедуры.

В качестве проверочной работы обучающийся выполняет графическую работу по индивидуальному варианту в ручной графике или с использованием графического редактора папоСАD. Вариант работы выбирается согласно порядкового номера списка группы. При выполнении проверочных графических работы обучающиеся должны придерживаться требований, перечисленных в стандартах ЕСКД: ГОСТ 2.051; 2.052; 2.053; 2.054; 2.055; 2.056; 2.057; 2.058; 2/301; 2.302; 2.303; 2.304, 2.305; 2.306; 2.307; 2.311; 2.316; 2.317; 2.104; 2.109 и т.д.

Перечень индивидуальных самостоятельных проверочных графических работ:

- 1. Эпюр№1
- 2. Пирамида с отверстием
- 3. Конус с отверстием
- 4. Эпюр№3
- 5. Эпюр №4
- 6. Чертёж детали
- 7. Изометрическая проекция детали
- 8. Сборочный чертёж " Соединение шпилечное". Спецификация
- 9. Деталирование сборочного чертежа

Критерии оценивания.

Отлично: Графическая задача решена верно. При решении графической задачи просматривается алгоритм построения. Изображения построены аккуратно и с соблюдением всех норм и правил оформления чертежа согласно стандартов ЕСКД. Хорошо: Графическая задача решена верно. При решении графической задачи просматривается алгоритм построения. Возможны небольшие отклонения от стандартов ЕСКД. Масштаб изображения может не подходить под выбранный формат. Удовлетворительно: Графическая задача решена верно, возможны небольшие неточности построения. При решении графической задачи не просматривается алгоритм построения. Возможны отклонения от стандартов ЕСКД. Масштаб изображения не подходит под выбранный формат.

Неудовлетворительно: Имеются значительные ошибки при решении графической задачи. На чертеже не просматривается алгоритм построения. Чертеж не оформлен согласно требований стандартов ЕСКД.

6.1.2 учебный год 1 | Тест

Описание процедуры.

В течении семестра учащиеся проходят тренировочные обучающие тесты по темам дисциплины. По завершению изучения учебной дисциплины в семестре учащийся обязан пройти промежуточную аттестацию. Вид промежуточной аттестации определяется рабочим учебным планом. Форма проведения промежуточной аттестации – компьютерное тестирование с использованием автоматизированной системы тестирования знаний студентов в ЭИОС (МООDLE)

Критерии оценивания.

Критерии оценки

Оценка «отлично» Тест выполнен > 70 %. .

Оценка «хорошо». Тест выполнен 70 %.

Оценка «удовлетворительно». Тест выполнен > 50 %.

Оценка «неудовлетворительно» . Тест выполнен 50%/

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
ОПК ОС-1.3	Демонстрирует знание методов изображения пространственных объектов и способов решения графических задач, а также базовые знания по оформлению конструкторской документации в соответствии с требованиями Единой Системы Конструкторской Документации; обладает конструктивно-геометрическим мышлением, способен к анализу и синтезу пространственных форм, поверхностей и объектов	графические работы, тесты
ОПК ОС-4.1	Демонстрирует знания положений и требований ЕСКД в отношении конструкторской документации, а также знания о пакетах программ автоматизированного проектирования и черчения	графические работы, тесты

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Учебный год 1, Типовые оценочные средства для проведения дифференцированного зачета по дисциплине

6.2.2.1.1 Описание процедуры

К зачёту допускаются студенты, выполнившие все виды контактной работы в полном объеме академических часов и успешно прошедшие все формы текущего контроля. Зачётная работа состоит из графической части и ответов на вопросы по выполненным графическим заданиям.

Время на подготовку 2 академических часа.

Пример задания:

1. Построить резьбовое соединение двух деталей, длина свинчивания указана; выполнить простые фронтальный и горизонтальный разрезы; оформить, как сборочный чертёж со спецификацией.

При выполнении работы соответствовать требованиям стандартов ЕСКД: ГОСТам 2.301...2.307-2011*, 2.311-68, 2.316-2008, 2.104-2006, 2.106-2019, 2.109-2023.

- 2. Список вопросов по теме индивидуальных графических работ:
- 1. Эпюр №1
- 1.1. Обучающему предлагается ответить на вопросы по теме чертежа
- каким обязательным требованиям соответствуют проекции горизонтали/фронтали на эпюре
- написать алгоритм решения задачи (определение точки пересечения прямой и плоскости)
- написать как определить видимость прямой относительно плоскости с использованием конкурирующих точек
- перечислить какие прямые на чертеже занимают общее или частное положение
- через точку в плоскости провести прямую уровня/ проецирующую/общего положения
- достроить проекцию точки, принадлежащей плоскости
- построить проекцию прямой, принадлежащей плоскости
- 2. Пирамида с отверстием
- перечислить основные элементы каркаса пирамиды
- показать, какие грани занимают в пространстве общее положение, честное положение относительно плоскостей проекций.
- написать, как называется способ, на основании которого определялась видимость линии отверстия
- написать по какому принципу выполнялся разрез на виде слева
- написать в каком случае на профильной проекции выполняется полный разрез пирамиды
- написать в каком случае на профильной проекции выполняется совмещение вида и разреза; по какой линии
- написать в каком случае линия соединения вида и разреза осевая/обрыва
- 3. Конус с отверстием
- перечислить основные элементы каркаса конуса
- написать, как называются образующие, принадлежащие плоскости главного меридиана
- написать, как называется способ, на основании которого определялась видимость линии отверстия
- написать по какому принципу выполнялся разрез на виде слева
- написать почему на профильной проекции выполняется совмещение вида и разреза; по какой линии
- написать в каком случае линия соединения вида и разреза осевая/обрыва
- написать какие секущие плоскости дают в пересечении с конусом окружность, эллипс, гиперболу или параболу
- 4. Эпюр №3
- написать свойство проецирующих геометрических образов

- написать определение плоскости частного положения, пересекающую конус
- написать по какому принципу определялась видимость линии сечения
- написать алгоритмы решения задачи, если пересекаются проецирующие ГО
- написать, какие линии каркаса применить для построения недостающих проекций точек, принадлежащих поверхности конуса

5. Эпюр №4

- написать название поверхностей, заданных на чертеже
- на чертеже показать фронтальную, горизонтальную, профильную проекцию тела
- показать проецирующую / непроецирующую поверхность
- написать, какое положение могут занимать пересекающиеся поверхности в пространстве и алгоритм решения задачи для каждого случая
- написать, по какому принципу определялась видимость линии пересечения
 6. Чертёж детали
- обосновать построение вертикальных разрезов
- написать в каком случае выполняется полный разрез детали
- написать в каком случае выполняется совмещение вида и разреза; по какой линии
- написать в каком случае линия соединения вида и разреза осевая/обрыва
- рассказать, из каких простейших поверхностей состоят детали графического задания №!
- 7. Изометрическая проекция детали
- объяснить, почему в основной надписи не заполняется графа «Масштаб»
- объяснить необходимость построения 1/4 выреза детали
- написать в каком случае на изометрии не выполняется вырез
- написать чем отличается модель детали от изометрии и разницу между этими изображениями
- 8. Соединение шпилечное
- написать: чему равна длина шпильки, длина резьбового конца шпильки, диаметр шпильки, на какой элемент шпильки влияет материал соединяемых деталей
- на что влияет материал соединяемых деталей
- объяснить, почему в одних случаях на чертеже при указании размера выбран символ диаметра, а в других перед размерным числом указана буква «М»
- перечислить, какие разделы спецификации обязательны для включения в документ
- объяснить, в каком порядке заполняются разделы спецификации
- написать, что символизирует код «СБ» после обозначения чертежа
- объяснить, какие изделия в спецификации помещают в раздел «Детали»
- в каком случае в спецификации обязателен раздел "Документация"
- 10. Деталирование сборочного чертежа
- написать критерии выбора главного вида на рабочем чертеже
- написать критерии выбора количества изображений
- написать принципы простановки размеров на рабочих чертежах детали. ГОСТ 2.307-2011
- какие группы простановки размеров на рабочих чертежах детали Вам известны
- написать содержание основной надписи для таких чертежей
- написать в чём разница между рабочим чертежом детали и её эскизом_

6.2.2.1.2 Критерии оценивания

Отлично	Хорошо	Удовлетворительн о	Неудовлетворительно
Демонстрирует	Хорошая степень	Не полностью	Не владеет
знаниеметодов	владения	владеет	теоретической и
изображения	теоретической и	теоретической и	практической
	практической	практической	информацией по теме

		1	
пространственных	информацией по	информацией по	проекционного
объектов и	теме	теме проекционного	черчения, построения
способов решения	проекционного	черчения,	рабочих и сборочных
графических	черчения,	построения рабочих	чертежей,
задач, а также	построения	и сборочных	деталирования
базовые знания по	рабочих и	чертежей,	сборочного чертежа.
оформлению	сборочных	деталирования	
конструкторской	чертежей,	сборочного чертежа.	
документации в	деталирования		
соответствии с	сборочного		
требованиями	чертежа.		
Единой Системы			
Конструкторской			
Документации;			
обладает			
конструктивно-			
геометрическим			
мышлением,			
способен к			
анализу и синтезу			
пространственных			
форм,			
поверхностей и			
объектов.			
Демонстрирует			
знания положений			
и требований			
ЕСКД в			
отношении			
конструкторской			
документации, а			
также знания о			
пакетах программ			
автоматизированн			
ОГО			
проектирования и			
черчения.			

7 Основная учебная литература

- 1. Чекмарев А. А. Инженерная графика. Машиностроительное черчение [Электронный ресурс] : учебник / А. А. Чекмарев, 2023. 396.
- 2. Дегтярев В. М. Инженерная и компьютерная графика : учеб. для студентов вузов по техническим направлениям / В. М. Дегтярев, В. П. Затыльникова, 2012. 238.
- 3. Левицкий В. С. Машиностроительное черчение и автоматизация выполнения чертежей: учеб. для втузов / В. С. Левицкий, 2004. 434.
- 4. Федоренко В. А. Справочник по машиностроительному черчению : справочное издание / В. А. Федоренко, А. И. Шошин, 2007. 416.

8 Дополнительная учебная литература и справочная

- 1. Чекмарев А. А. Инженерная графика. Машиностроительное черчение : учебник для вузов / А. А. Чекмарев, 2011. 394 [6].
- 2. Чекмарев А. А. Инженерная графика. Машиностроительное черчение : учебник для вузов по направлению подготовки специалистов в машиностроении / А. А. Чекмарев, 2015. 394.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/
- 3. https://www.nanocad.ru/support/education/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/
- 11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем
- 1. NanoCAD + NanoCAD СПДС 21
- 2. NanoCAD 24 Платформа для учебного процесса

12 Материально-техническое обеспечение дисциплины

1. персональный компьютер со всеми комплектующими, лицензионное программное обеспечение. Компьютер имеет доступ в сеть Интернет.