Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Структурное подразделение «Химии и биотехнологии имени В.В. Тутуриной»

УТВЕРЖДЕНА:

на заседании кафедры Протокол №16 от 12 мая 25 г.

Рабочая программа дисциплины

«RNЧАНИОИЗ»				
П 10 04 02 П				
Направление: 19.04.02 Продукты питания из растительного сырья				
Биотехнология биологически активных веществ				
Квалификация: Магистр				
Форма обучения: очная				

Документ подписан простой электронной подписью

Составитель программы: Протопопова

Марина Владимировна

Дата подписания: 21.06.2025

Документ подписан простой электронной подписью

Утвердил и согласовал: Евстафьев Сергей

Николаевич

Дата подписания: 23.06.2025

1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

1.1 Дисциплина «Биоинженерия» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ПК-2 Способность к разработке предложений по	
оптимизации биотехнологических процессов и	ПК-2.1
управлению выпуском биотехнологической	11K-2.1
продукции	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ПК-2.1	Демонстрирует способность к оптимизации параметров биотехнологического процесса получения БАВ из природных источников	Знать основные методы исследования в области биотехнологии и биоинженерии. Уметь проводить сбор, систематизацию, обработку и анализ научно-технической информации, самостоятельно ставить задачи и проводить оптимизацию биотехнологических процессов с использованием методов биоинженерии. Владеть навыками использования молекулярно-биологических и генно-инженерных подходов в биотехнологическом производстве.

2 Место дисциплины в структуре ООП

Изучение дисциплины «Биоинженерия» базируется на результатах освоения следующих дисциплин/практик: Нет

Дисциплина является предшествующей для дисциплин/практик: «Биотехнология БАВ», «Производственная практика: научно-исследовательская работа (научно-исследовательский семинар)», «Производственная практика: технологическая практика», «Технология получения БАВ из природных источников»

3 Объем дисциплины

Объем дисциплины составляет – 4 ЗЕТ

	Трудоемкость в академич (Один академический час со		
Вид учебной работы	минутам астрономического часа)		
	Всего	Семестр № 1	
Общая трудоемкость дисциплины	108 108		
Аудиторные занятия, в том числе:	42	42	
лекции	14	14	

лабораторные работы	28	28
практические/семинарские занятия	0	0
Самостоятельная работа (в т.ч. курсовое проектирование)	30	30
Трудоемкость промежуточной аттестации	36	36
Вид промежуточной аттестации (итогового контроля по дисциплине)	Экзамен	Экзамен

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр № 1

	11		Виды контактной работы		CPC		Ф			
N₂	Наименование	Лекции		J.	ЛР ПЗ(СЕМ)		CPC		Форма	
п/п	п/п раздела и темы дисциплины		Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Введение в биоинженерию: предмет изучения и области исследований. Разнообразие форм жизни на земле и подходы по использованию разных групп организмов в биоинженерии.	1	2					2, 4, 5	4	Тест, Устный опрос
2	Основные принципы организации и реализации генетической информации в живых организмах и их использование в биоинженерных	2	6	1, 2	8			1, 2, 3, 4, 5	13	Отчет по лаборатор ной работе, Тест, Устный опрос
3	подходах. Генетическая инженерия: теоретические основы и основные методологические подходы.	3	6	3, 4, 5, 6	20			1, 2, 3, 4, 5	13	Отчет по лаборатор ной работе, Тест, Устный опрос
	Промежуточная аттестация								36	Экзамен
	Всего		14		28				66	

4.2 Краткое содержание разделов и тем занятий

Семестр № 1

No	Тема	Краткое содержание
1	Введение в	Тема 1.1. Предмет изучения биоинженерии и
	биоинженерию:	области исследований
	предмет изучения и	Тема 1.2. Определение жизни. Отличия живых
	области исследований.	систем от неживых. Клеточная теория:
	Разнообразие форм	классические и современные представления.
	жизни на земле и	Тема 1.2. Разнообразие форм жизни на земле.
	подходы по	Неклеточные и клеточные формы жизни.
	использованию разных	Основные подходы по использованию разных
	групп организмов в	групп организмов в биоинженерии. Понятие о
	биоинженерии.	трансгенных организмах.
2	Основные принципы	Тема 2.1 Понятие о геноме, транскриптоме,
	организации и	протеоме и метаболоме. Организация и форма
	реализации	генома у различных групп организмов.
	генетической	Тема 2.2 Состав, строение и виды нуклеиновых
	информации в живых	кислот. 5' и 3'-концы в строении нуклеиновых
	организмах и их	кислот. Принцип комплементарности в
	использование в	организации нуклеиновых кислот.
	биоинженерных	Комплементарные пары азотистых оснований при
	подходах.	формировании вторичной структуры нуклеиновых
		кислот и межмолекулярных взаимодействиях.
		Функции нуклеиновых кислот в клетках.
		Тема 2.3 Организация генома эукариотической
		клетки. Уровни упаковки ядерной ДНК в
		эукариотических клетках. Хроматин и его виды.
		Типы метафазных хромосом и их структурные
		элементы. Понятие о кариотипе. Длина генома,
		золотой путь как мера длины генома (Golden Path
		Length). Различия в размере геномов у разных
		групп эукариот.
		Тема 2.4 Кодирующие и некодирующие элементы
		геномов эукариот. Понятие гена, основные виды
		некодирующей ДНК и их биологическая роль.
		Мобильные генетические элементы и их типы.
		Способы транспозиции. Биологическое значение.
		Тема 2.5 Понятие о транскриптоме. Основные
		виды РНК эукариот: информационные и
		некодирующие РНК.
		Тема 2.6 Центральная догма молекулярной
		биологии: классические и современные
		представления.
		Тема 2.7 Общее понятие о репликации, транскрипции, обратной транскрипции и
		транскрипции, ооратнои транскрипции и трансляции, основные механизмы регуляции. Роль
		процессов в реализации генетической информации в клетке. Использование механизмов этих
		процессов в генетической инженерии.
		Тема 2.8 Понятие генетического кода и его
		свойств. Принцип перевода нуклеотидной
		последовательности в аминокислотную. Строение

		o DIII/
		зрелой иРНК, определение истинных старт- и
		стоп-кодонов.
		Тема 2.9. Генетические базы данных и
		использование биоинформационных подходов в
		обработке данных о нуклеотидных
		последовательностях.
3	Генетическая	Тема 3.1 Технологии получения рекомбинантных
	инженерия:	ДНК: общие понятия и принципы. Донорная и
	теоретические основы и	векторная ДНК. Использование кДНК в качестве
	основные	донорной молекулы. Молекулярное клонирование.
	методологические	Тема 3.2 Основные подходы по получению
	подходы.	целевых фрагментов ДНК для создания
		рекомбинантных векторных систем: рестрикция и
		полимеразная цепная реакция. Типы концов ДНК
		(тупые и выступающие): получение и типы
		возможных операций с ними. Ферменты,
		используемые для получения различных типов
		концов ДНК, фосфорилирование и
		дефосфорилирование концов ДНК.
		Тема 3.3 Рестрикция ДНК и эндонуклеазы
		рестрикции: классификация, особенности
		функционирования, практическое использование
		различных классов рестриктаз в генно-
		инженерных подходах.
		Тема 3.4 Полимеразная цепная реакция (ПЦР).
		Принцип метода. Основные компоненты и
		продукты реакции. Этапы и их параметры.
		Температура отжига праймеров и время
		элонгации. Типы субстратов для ПЦР.
		Тема 3.5 ДНК-зависимые ДНК-полимеразы и их
		свойства. Направление работы и известные типы
		ферментативной активности ДНК полимераз. Таq-
		полимераза и ее свойства.
		Тема 3.6 Лигирование фрагментов ДНК для
		получения рекомбинантных молекул. ДНК-лигазы
		и условия для их работы.
		Тема 3.7 Электрофорез нуклеиновых кислот:
		принцип метода, основные этапы и использование
		метода для разделения и очистки целевых
		фрагментов ДНК. Направление миграции
		нуклеиновых кислот в электрическом поле. Типы
		красителей, используемые в электрофорезе
		нуклеиновых кислот. Интеркалирующие
		красители. Понятие о размерном стандарте и его
		назначение.
		тема 3.8 Векторы для клонирования ДНК и их
		разнообразие.
		Тема 3.9 Природные плазмиды и векторы на
		основе плазмид. Основные функциональные
		элементы. Высоко- и низкокопийные векторы.
		Тема 3.10 Основные подходы создания

рекомбинантных векторных плазмид. Подходы с использованием рестрикции-лигирования, клонирование ТА, клонирование ТОРО-ТА, изотермическая сборка Гибсона, метод золотых ворот (клонирование Golden Gate). Ферменты и типы используемых векторов, этапы и ограничения методов. Тема 3.11 Подходы и этапы генетической трансформации бактериальных клеток с использованием плазмидных векторов на примере кишечной палочки. Тема 3.12 Методы позитивной, негативной селекции и скрининга трансгенных бактериальных клеток с использованием селективных маркеров и репортерных генов. Двухэтапная селекция рекомбинантных плазмид с использованием генов устойчивости к антибиотикам, суицидальных генов и бело-голубого скрининга колоний. Тема 3.13 Подходы по верификация целевого характера генетической конструкции методами ПЦР и секвенирования ДНК. Тема 3.14 Использование вирусов как векторных систем. Разнообразие строения вирусов и типов вирусных геномов. Основные этапы жизненного цикла вирусов и их отличия у различных групп. Тема 3.15 Основные типы векторов на основе вирусов и их характеристики. Векторы на основе бактериофагов, векторы на основе вирусов млекопитающих. Тема 3.16 Другие типы векторов: космиды, бактериальные искусственные хромосомы (ВАС), РАС, искусственные хромосомы дрожжей (YAC). Тема 3.17 Основные подходы по генетической трансформации растений. Агробактериальная трансформация растений: принцип и основные этапы. Использование свойства тотипотентности клеток для регенерации растений из единичных клеток. Микроклональное размножение растений

4.3 Перечень лабораторных работ

Семестр № 1

N₂	Наименование лабораторной работы	Кол-во академических часов
1	Состав, строение, и виды нуклеиновых кислот.	4
2	Генетический код и строение мРНК: принцип перевода нуклеотидной последовательности в аминокислотную.	4
3	Рестрикция ДНК и эндонуклеазы рестрикции, практическое использование различных классов	4

in vitro.

	рестриктаз в генно-инженерных подходах.	
4	Полимеразная цепная реакция (ПЦР): Принцип метода, основные компоненты, этапы и их	8
	параметры.	
5	Лигирование фрагментов ДНК для получения	1
5	рекомбинантных молекул.	4
6	Методы верификации генно-инженерных	4
	конструкций.	+

4.4 Перечень практических занятий

Практических занятий не предусмотрено

4.5 Самостоятельная работа

Семестр № 1

No	Вид СРС	Кол-во академических часов
1	Оформление отчетов по лабораторным и практическим работам	4
2	Подготовка к контрольным работам	7
3	Подготовка к практическим занятиям (лабораторным работам)	4
4	Подготовка к экзамену	10
5	Проработка разделов теоретического материала	5

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: не предусмотрены

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по лабораторным работам:

Лабораторные работы являются одним из видов практического обучения, целью которых является закрепление теоретических знаний в области генетической и клеточной инженерии, приобретение и развитие практических навыков в использовании методов молекулярно-генетического анализа, навыков работы с научно-техническими протоколами и технической документацией к современному оборудованию, навыков планирования и проведения экспериментальных работ и анализа полученных результатов, навыков подготовки научно-технических отчетов и документации.

Общий план выполнения лабораторных работ

- 1. Ознакомиться с теоретическим введением. Ознакомление может осуществляться также в форме научной дискуссии с преподавателем.
- 2. Ознакомиться с методикой и последовательностью выполнения работы.
- 3. Выполнить требуемые расчеты, заполнить таблицы привести схемы процессов. Для расчетов использовать инструкцию к реактивам, а также другой методический раздаточный материал, предоставляемый преподавателем.
- 4. Проанализировать результаты и сделать выводы, ответить на контрольные вопросы (при наличии).

5. Оформить отчет в установленный преподавателем срок в соответствии с выставленными требованиями.

5.1.2 Методические указания для обучающихся по самостоятельной работе:

Самостоятельная работа проводится с целью закрепления и углубления знаний по дисциплине и предусматривает следующие элементы:

Подготовка к лабораторным работам

Тема и задание для лабораторной работы предоставляется студентам предварительно за одну неделю до его проведения.

Задание включает следующие элементы подготовки

- 1. Изучение и повторение учебного материала с использованием конспекта лекции и рекомендуемой литературы по теме предстоящей лабораторной работы.
- 2. Разбор и заучивание новых понятий и терминов, внесение (при необходимости) их в глоссарий.
- 3. Анализ контрольных вопросов (при наличии).

Оформление отчетов по лабораторным работам

Целью оформления отчетов является закрепление знаний, полученных в ходе выполнения лабораторных работ и лекционных занятий, систематизация полученных результатов работы и формулирование выводов, развитие навыков подготовки научно-технической документации.

Заданием для самостоятельной работы является подготовка отчетов по лабораторным работам из перечня, приведенного в п. 4.3 согласно требованиям, изложенным в п. 6.1.3.

Проработка отдельных разделов теоретического курса

Целью проработки является совершенствование навыков самообразовательной работы как основного пути повышения уровня образования, углубление знаний по дисциплине.

Задание включает следующие элементы подготовки

- 1. Изучение материала, изложенного в лекциях.
- 2. Изучение и анализ рекомендованной литературы.
- 3. Самостоятельный поиск, изучение и анализ литературы по дисциплине, не указанной в списке рекомендованной литературы, в том числе с использованием текстов научных публикаций.
- 4. Повторение и закрепление навыков решения расчетных задач, разбор которых проводился на практических занятиях.
- 5. Формирование списка вопросов, которые после тщательной теоретической проработки студентом, остаются до конца непонятными для их разбора в рамках практических занятий или консультаций с преподавателем.
- 6. Выполнение домашних заданий, которые выдаются преподавателем на практических занятиях.

Подготовка к контрольным работам

Целью подготовки является закрепление теоретических знаний и практических навыков, полученных в ходе освоения дисциплины, а также закрепление всех необходимых для успешного усвоения дисциплины компетенций.

Заданием для самостоятельной работы теоретическую подготовку с использованием конспекта лекций и рекомендуемой литературы, а также самостоятельно найденной информации с использованием официальных источников и научных публикаций, повторение и закрепление навыков решения расчетных задач, разбор которых проводился

на практических занятиях.

Контрольные работы могут проводится в виде проверочной работы с открытой формой ответа, а также в форме тестирования.

Подготовка к экзамену

Целью подготовки является закрепление теоретических знаний и практических навыков, полученных в ходе освоения дисциплины, а также закрепление всех необходимых для успешного усвоения дисциплины компетенций.

Основные рекомендации по выполнению заданий включают теоретическую подготовку с использованием конспекта лекций и рекомендуемой литературы, а также самостоятельно найденной информации с использованием официальных источников и научных публикаций, повторение и закрепление навыков решения расчетных задач, разбор которых проводился на практических занятиях.

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 семестр 1 | Устный опрос

Описание процедуры.

Устный опрос проводятся в форме коллоквиума с целью проверки и оценивания знаний студентов. Опрос проводится в форме индивидуальной беседы преподавателя со студентом или как массовый опрос. В ходе группового обсуждения студенты учатся вести дискуссию по теме, аргументировать свое мнение, применяя знания, полученные в рамках занятий по текущей и другим дисциплинам. В ходе опроса также может происходить обсуждение письменных и домашних работ студентов. Основные вопросы для подготовки к опросу доводятся до сведения студентов на предшествующем практическом занятии.

Вопросы для подготовки к устному опросу:

- 1. Предмет изучения биоинженерии и области исследований.
- 2. Отличия живых систем от неживых. Клеточная теория: классические и современные представления.
- 3. Разнообразие форм жизни на земле. Основные подходы по использованию разных групп организмов в биоинженерии.
- 4. Понятие о трансгенных организмах.
- 5. Технологии получения рекомбинантных ДНК: общие понятия и принципы. Молекулярное клонирование.
- 6. Рестрикция ДНК и эндонуклеазы рестрикции: классификация, особенности функционирования, практическое использование различных классов рестриктаз в генно-инженерных подходах.
- 7. Полимеразная цепная реакция (ПЦР): принцип метода, основные компоненты и продукты реакции, этапы. Расчет состава реакционной смеси и температурно-временных параметров реакции.
- 8. Электрофорез нуклеиновых кислот: принцип метода, основные этапы и использование метода для разделения и очистки целевых фрагментов ДНК.
- 9. Основные подходы создания рекомбинантных векторных плазмид. Методы позитивной, негативной селекции и скрининга трансгенных бактериальных клеток с использованием селективных маркеров и репортерных генов.
- 10. Подходы по верификация целевого характера генетической конструкции методами ПЦР и секвенирования ДНК.

- 11. Основные типы векторов на основе вирусов и их характеристики.
- 12. Векторы на основе космид, бактериальные искусственные хромосомы (ВАС), РАС, искусственные хромосомы дрожжей (YAC).
- 13. Агробактериальная трансформация растений: принцип и основные этапы. Микроклональное размножение растений in vitro.

Критерии оценивания.

- «Отлично»: студент полно и аргументировано отвечает по содержанию задания, обнаруживает понимание материала, может обосновать свои суждения, применить знания на практике, привести необходимые примеры не только по учебнику, но и самостоятельно составленные, излагает материал последовательно и правильно.
- «Хорошо»: студент дает ответ, удовлетворяющий тем же требованиям, что и для оценки «отлично», однако допускается неполные ответы на основные и/или дополнительные вопросы по теме вопроса и/или допускает незначительные ошибки, при наличии в целом верного ответа на основной вопрос.
- «Удовлетворительно»: студент демонстрирует понимание основных положений данного задания, но излагает материал неполно и допускает неточности в определении понятий, имеются затруднения с выводами. Допускаются нарушения в последовательности изложения, отступления от норм научного языка.
- «Неудовлетворительно»: ответы на основные и/или уточняющие вопросы отсутствует и/или ответы не позволяют судить о наличии у студента знаний по дисциплине. Студент демонстрирует существенные нарушения в последовательности изложения и отступления от норм научного языка.

6.1.2 семестр 1 | Тест

Описание процедуры.

Тест состоит из двух частей – задания и эталона. Задание выдаётся студентам для выполнения, эталон представляет собой образец правильного и последовательного выполнения задания. Сравнивая эталон с ответом студента, можно объективно судить о качестве усвоения учебного материала.

К каждому вопросу предлагается несколько ответов на выбор, студенты должны найти среди них правильные. Допускается наличие в вопросе несколько верных вариантов ответа. Максимальный балл при оценке результатов ответа возможен только если студент отметил все правильные варианты ответа, и не выбрал ни одного неверного варианта. Вопросы теста также могут содержать пустые поля для внесения ответа вручную, а также поля для внесения решений расчетных задач.

Перечень заданий

- 1. Самостоятельно и предварительно провести теоретическую подготовку с использованием конспекта лекций и рекомендуемой литературы, а также самостоятельно найденной информации с использованием официальных источников и научных публикаций, в соответствии с программой дисциплины по теме тестирования.
- 2. Ответить на вопросы в соответствии предложенным перечнем.

Вопросы для контроля

Темы для подготовки озвучиваются студентам минимум за одну неделю до проведения тестирования. Вопросы к тестам формулируются исходя из содержания отдельных разделов и тем дисциплины.

Примерные тестовые задания:

- 1. Отметьте возможные пути передачи генетической информации, известные для живых систем и/или показанные экспериментально in vitro:
- a) $ДHK \rightarrow ДHK$
- б) ДНК → РНК
- в) РНК → ДНК
- Γ) PHK \rightarrow PHK
- д) ДНК → белок
- е) РНК → белок
- ж) белок → белок
- з) белок → РНК
- и) белок → ДНК
- 2. Основной функцией репликации ДНК в клетках является:
- а) синтез матричных и транспортных РНК для синтеза белка
- б) увеличение количества ДНК/РНК-матриц для синтеза мРНК
- в) удвоение генетической информации для последующего деления клетки
- г) синтез белков и полипептидов в клетке
- д) точная функция не известна
- 3. Укажите виды каталитических активностей, которые можно встретить у бактериальных ДНК-полимераз.
- а) 5' → 3' полимеразная активность
- б) 3' → 5' полимеразная активность
- в) $5' \to 3'$ экзонуклеазная активность
- г) $3' \to 5'$ экзонуклеазная активность
- д) эндонуклеазная активность
- е) хеликазная активность
- ж) протеазная активность
- 4. Скорость работы ДНК-полимеразы это:
- a) количество нуклеотидов, которое присоединяет ДНК-полимераза к растущей цепи за единицу времени
- б) количество нуклеотидов, которое присоединяет ДНК-полимераза к растущей цепи за один цикл связывания с матрицей ДНК
- в) редактирующая способность ДНК-полимеразы
- г) способность ДНК-полимеразы раскручивать двойную цепь ДНК в процессе репликации
- д) то же самое, что полимеразная активность
- 5. Фермент ДНК-лигаза катализирует:
- а) ковалентное сшивание цепей ДНК
- б) полимеризацию цепи ДНК
- в) разрезание цепи ДНК на отдельные фрагменты
- г) расщепление цепи ДНК с 5'-конца
- д) расщепление цепи ДНК с 5'-конца

Критерии оценивания.

- «Отлично» 80% и более правильных ответов.
- «Хорошо» -65-79% правильных ответов.
- «Удовлетворительно» 50-65% правильных ответов.
- «Неудовлетворительно» меньше 50% правильных ответов.

6.1.3 семестр 1 | Отчет по лабораторной работе

Описание процедуры.

Отчет должен быть выполнен в установленный преподавателем срок, в соответствии с требованиями к оформлению отчетов о научно-исследовательской работе. Отчет по выполнению лабораторной работы включает цель и задачи работы, ход выполнения работы, полученных результатов, выводов. Если выполнение работы проводится на специальном бланке для выполнения работы, выданном преподавателем, то оформление отчета производится студентом в соответствие с постановленными полями для заполнения. Отчет должен быть подготовлен каждым студентом индивидуально в рукописном варианте. Если работа предполагает использование средств информационных технологий, то отчет может предоставляться частично или полностью в цифровом виде, что оговаривается преподавателем отдельно и предварительно. Отчеты в назначенный срок сдаются на проверку. Отчет может подразумевать индивидуальную или коллективную форму защиты в форме научной дискуссии. По усмотрению преподавателя может быть проведена работа над ошибками с индивидуальным/коллективным разбором ошибок.

Перечень заданий:

Заданием для самостоятельной работы является подготовка отчетов по лабораторным из перечня, приведенного в п. 4.3. Требования к отчетным материалам включают следующие:

- 1. отчет должен быть выполнен в установленный преподавателем срок, в соответствии с требованиями к оформлению отчетов о научно-исследовательской работе;
- 2. отчет должен включать цель и задачи работы, ход выполнения, полученные результаты, выводы;
- 3. отчет должен быть подготовлен каждым студентом индивидуально в рукописном варианте, если не подразумевается выполнение работы с привлечением информационных технологий.

Вопросы для контроля:

Вопросы представлены в методических указаниях поле каждой лабораторной работы либо озвучиваются преподавателем в устном виде.

Критерии оценивания.

Оценивание отчетов производится по двухбалльной шкале. Студент получает оценку «зачтено», если предложенные задания выполнены в целом правильно, демонстрируется знание теоретического и практического материала, представлены в целом верные ответы на контрольные вопросы. Оценка «не зачтено» выставляется в случае, если студент не сдал задание к началу промежуточной аттестации, или же задание выполнено неверно и/или отчетные материалы не позволяют судить о наличии у студента знаний по дисциплине. Наличие оценок «не зачтено» при выполнении практических работ является основанием по недопуску студента к промежуточной аттестации.

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы)
-------------------------------------	---------------------	----------------------

		оценивания промежуточной	
		аттестации	
ПК-2.1	Владеет теоретическими основами и	Устный опрос,	
	практическими навыками по	тестирование.	
	использованию методов молекулярно-		
	генетического анализа и генетической		
	инженерии в оптимизации		
	биотехнологических процессов.		

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 1, Типовые оценочные средства для проведения экзамена по дисциплине

6.2.2.1.1 Описание процедуры

Экзамен проводится в сроки, установленные графиком учебного процесса и расписанием экзаменационных сессий. Предварительно составляется график консультаций, во время которой преподаватель ознакомит с основными вопросами промежуточной аттестации и даст разъяснения при возникновении вопросов со стороны студентов. Экзамен проводиться с целью оценки качества усвоения студентами всего объёма содержания дисциплины и определения фактически достигнутых знаний, навыков и умений, а также компетенций, сформированных за время аудиторных занятий и самостоятельной работы студента.

К экзамену допускаются студенты, выполнившие в полном объеме аудиторную нагрузку, самостоятельную работу, успешно сдавшие все предусмотренные формы текущего контроля. Студенты, имеющие задолженность по текущему контролю, должны выполнить все обязательные виды деятельности по учебному плану, и только затем допускаются к сдаче экзамена. Все виды заложенностей по текущему контролю должны быть погашены студентами не позднее, чем за одну неделю до начала промежуточной аттестации. Экзамен проводится в форме устного собеседования по экзаменационным билетам, включающим один теоретический вопрос, тестовую часть и решение одной ситуационной задачи из приведенного перечня.

Объем вопросов в билете рассчитан на устный ответ студента в течение до 10 минут и подготовку письменного решения в течение до 20 минут.

Преподаватель может задавать уточняющие вопросы по существу ответа и дополнительные вопросы в рамках программы данной учебной дисциплины.

Вопросы для контроля в форме устного опроса и теста:

- 1. Биоинженерия: понятие и область исследований. Генетическая инженерия как раздел биоинженерии. Понятие о трансгенных организмах.
- 2. Понятие о жизни. Основные отличия живых систем от неживых. Классические постулаты клеточной теории и современные представления. Разнообразие форм жизни на земле.
- 3. Понятие о геноме, транскриптоме, протеоме и метаболоме. Организация и форма генома у различных групп организмов.
- 4. Нуклеиновые кислоты и их виды. Состав, строение и виды нуклеиновых кислот. 5' и 3'-концы в строении нуклеиновых кислот. Принцип комплементарности в организации нуклеиновых кислот. Комплементарные пары азотистых оснований при формировании вторичной структуры нуклеиновых кислот и межмолекулярных взаимодействиях.

Функции нуклеиновых кислот в клетках.

- 5. Организация генома про- и эукариотической клетки. Уровни упаковки ядерной ДНК в эукариотических клетках. Хроматин и его виды. Типы метафазных хромосом и их структурные элементы. Понятие о кариотипе.
- 6. Размер генома, различия в размере геномов у разных групп эукариот. Значений C-value, G-value в оценке сложности организмов и их парадоксы. Концепция значения I-value как частичное решение парадоксов значений С и G.
- 7. Кодирующие и некодирующие элементы геномов эукариот. Понятие гена, основные виды некодирующей ДНК и их биологическая роль. Мобильные генетические элементы и их типы. Способы транспозиции. Биологическое значение.
- 8. Понятие о транскриптоме. Разнообразие видов РНК эукариот: информационные и некодирующие РНК и их биологическое значение. РНК-интерференция: общий принцип.
- 9. Центральная догма молекулярной биологии: классические и современные представления. Общее понятие о репликации, транскрипции, обратной транскрипции и трансляции, основные механизмы регуляции. Роль процессов в реализации генетической информации в клетке. Использование механизмов этих процессов в генетической инженерии.
- 10. Генетический код и его свойства. Принцип перевода нуклеотидной последовательности в аминокислотную. Строение зрелой иРНК, определение истинных старт- и стоп-кодонов.
- 11. Технологии получения рекомбинантных ДНК: общие понятия и принципы. Донорная и векторная ДНК. Использование кДНК в качестве донорной молекулы. Молекулярное клонирование.
- 12. Основные подходы по получению целевых фрагментов ДНК для создания рекомбинантных векторных систем: рестрикция и полимеразная цепная реакция. Типы концов ДНК (тупые и выступающие): получение и типы возможных операций с ними. Ферменты, используемые для получения различных типов концов ДНК, фосфорилирование и дефосфорилирование концов ДНК.
- 13. Векторы для клонирования ДНК и их разнообразие. Плазмиды и векторы на основе плазмид. Основные функциональные элементы. Высоко- и низкокопийные плазмиды. Сайт огі и его значение для копийности и для клонирования плазмид в различных группах организмов.
- 14. Рестрикция ДНК и эндонуклеазы рестрикции: классификация, особенности функционирования, практическое использование различных классов рестриктаз в генно-инженерных подходах. Особенности работы рестриктаз IIP и IIS типа.
- 15. Полимеразная цепная реакция (ПЦР). Принцип метода. Основные компоненты и продукты реакции. Этапы и их параметры. Температура отжига праймеров и время элонгации. Основные типы субстратов для ПЦР. Получение кДНК и ее использование в качестве матрицы.
- 16. Многообразие ДНК-зависимых ДНК-полимераз и их свойства. Направление работы и известные типы ферментативной активности ДНК-полимераз. Таq-полимераза и ее свойства.
- 17. Лигирование фрагментов ДНК для получения рекомбинантных молекул. ДНК-лигазы и условия для их работы.
- 18. Электрофорез нуклеиновых кислот: принцип метода, основные этапы и использование метода разделения и очистки целевых фрагментов ДНК. Направление миграции нуклеиновых кислот в электрическом поле. Типы красителей, используемые в электрофорезе нуклеиновых кислот. Интеркалирующие красители. Понятие о размерном стандарте и его назначение.
- 19. Подходы по созданию рекомбинантных плазмидных векторов: клонирование по принципу рестрикции-лигирования.

- 20. Подходы по созданию рекомбинантных плазмидных векторов: клонирование ТА.
- 21. Подходы по созданию рекомбинантных плазмидных векторов: клонирование ТОРО-ТА.
- 22. Подходы по созданию рекомбинантных плазмидных векторов: изотермическая сборка Гибсона.
- 23. Подходы по созданию рекомбинантных плазмидных векторов: метод золотых ворот (клонирование Golden Gate).
- 24. Подходы и этапы генетической трансформации бактериальных клеток с использованием плазмидных векторов на примере кишечной палочки.
- 25. Методы позитивной, негативной селекции и скрининга трансгенных бактериальных клеток с использованием селективных маркеров и репортерных генов. Двухэтапная селекция рекомбинантных плазмид с использованием генов устойчивости к антибиотикам, суицидальных генов и бело-голубого скрининга колоний.
- 26. Подходы по верификация целевого характера генетической конструкции методами ПЦР и секвенирования ДНК.
- 27. Агробактериальная трансформация растений: принцип и основные этапы. Тотипотентность клеток и использование этого свойства для микроклонального размножение растений in vitro.
- 28. Основные представления о строении вирусных частиц как потенциальных векторных систем. Разнообразие строения вирусов и типов вирусных геномов. Основные этапы жизненного цикла вирусов и их отличия у различных групп.
- 29. Основные типы векторов на основе вирусов. Векторы на основе бактериофагов и их характеристики.
- 30. Основные типы векторов на основе вирусов. Векторы на основе вирусов животных и их характеристики.
- 31. Векторные системы на основе космид, бактериальных искусственных хромосом (ВАС), РАС, искусственных хромосом дрожжей (YAC): принципы строения и основные свойства.

Перечень ситуационных (расчетных) задач для контроля в форме представления письменного решения:

- 32. Рестрикция ДНК: расчет компонентного состава и температурного режима реакции с заданными условиями. Схема реакции.
- 33. Получение рекомбинантного плазмидного вектора: расчет компонентного состава реакции, расчет молярного соотношения векторной молекулы и ДНК-вставки с заданными условиями. Схема реакции.
- 34. Полимеразная цепная реакция: расчет компонентного состава и схема получения ампликонов с заданными условиями.
- 35. Полимеразная цепная реакция: расчет компонентного состава и температурновременных параметров ПЦР с заданными условиями.
- 36. Генетический код и перевод модельной нуклеотидной последовательности в аминокислотную.
- 37. Результаты электрофореза нуклеиновых кислот: общее описание экспериментальных результатов по модельному гелю, оценка размеров фрагментов нуклеиновых кислот и установление предположительного типа матрицы.

Пример задания:

Демонстрационный вариант билета:

БИЛЕТ № 1

1. Подходы по созданию рекомбинантных плазмидных векторов: клонирование по принципу рестрикции-лигирования.

- 2. Задача: Рестрикция ДНК. Рассчитать компонентный состав и температурный режим реакции с заданными условиями. Привести схему реакции.
- 3. Тест: Выберете все верные ответы из предложенных.
- 1. Отметьте возможные пути передачи генетической информации, известные для живых систем и/или показанные экспериментально in vitro:
- a) $ДHK \rightarrow ДHK$
- б) ДНК \rightarrow РНК
- в) РНК → ДНК
- Γ) PHK \rightarrow PHK
- д) ДНК → белок
- е) РНК → белок
- ж) белок → белок
- з) белок → РНК
- и) белок → ДНК
- 2. Основной функцией репликации ДНК в клетках является:
- а) синтез матричных и транспортных РНК для синтеза белка
- б) увеличение количества ДНК/РНК-матриц для синтеза мРНК
- в) удвоение генетической информации для последующего деления клетки
- г) синтез белков и полипептидов в клетке
- д) точная функция не известна
- 3. Ген β-галактозидазы (lacZ) в векторных системах предназначен для:
- а) проведения позитивной селекции полученных клонов
- б) проведения негативной селекции полученных клонов
- в) проведения скрининга полученных клонов по нелетальному признаку
- г) проведения скрининга полученных клонов методами ПЦР и/или секвенирования
- д) нет правильного ответа
- 4. Суицидальные гены в векторных системах предназначены для:
- а) проведения позитивной селекции полученных клонов
- б) проведения негативной селекции полученных клонов
- в) проведения скрининга полученных клонов по нелетальному признаку
- г) проведения скрининга полученных клонов методами ПЦР и/или секвенирования
- д) нет правильного ответа
- 5. В случае сборки по методу золотых ворот (Golden Gate) пр создании рекомбинантного вектора обязательными условиями являются:
- а) рестрицирование вектора и вставки
- б) наличие однонуклеотидного выступа «А» на 3'-конце вставки
- в) наличие однонуклеотидного выступа «Т» на 5'-конце
- г) наличие/создание липких концов с двумя и более выступающими нуклеотидами у вектора и вставки
- д) использование ДНК-лигазы в реакции
- е) использование З'-экзонуклеазы в реакции
- ж) использование 5'-экзонуклеазы в реакции
- з) использование ДНК-полимеразы в реакции
- и) использование рестриктаз типа IIS в реакции
- к) использование рестриктаз типа IIP в реакции_

6.2.2.1.2 Критерии оценивания

Отлично	Хорошо	Удовлетворительн о	Неудовлетворительно
Студент	Студент	Студент	Студент
демонстрирует	демонстрирует	демонстрирует	демонстрирует
глубокие знания	знания по	знания по основным	поверхностные знания
по основным	основным	разделам	по основным разделам
разделам	разделам	дисциплины, но не в	дисциплины, либо не
дисциплины.	дисциплины.	полном объеме.	демонстрирует их
Владеет знаниями	Допускается	Допускаются	вовсе. Отсутствуют
об организации и	неполные ответы	неполные ответы на	ответы на основные
реализации	на	дополнительные	и/или дополнительные
генетической	дополнительные	вопросы, неполное	вопросы и/или ответы
информации у	вопросы по теме.	решение или	не позволяют судить о
разных групп	Демонстрирует	отсутствие решения	наличии у студента
организмов,	знания подходов	ситуационных задач	знаний по дисциплине.
владеет	по решению	и/или отсутствие	Решение
теоретическими	ситуационных	разъяснений	ситуационных задач
основами и	задач в рамках	подходов по их	отсутствуют или
ОСНОВНЫМИ	дисциплины.	решению при	полностью отсутствует
методологическим	Допускается	условии наличия в	объяснение их
и подходами	неполное решение	целом верных	решения. Материал
генетической	задач при	ответов на основные	излагается
инженерии,	демонстрации	вопросы. Имеются	непоследовательно,
навыками работы	понимания вывода	затруднения с	сбивчиво, с
с научно-	основных	выводами.	серьезными
техническими	закономерностей,	Допускаются	отступлениями от
протоколами и	а также	нарушения в	норм научного языка,
технической	представляет	последовательности	изложение ответа
документацией к	разъяснения	изложения.	трудно доступно или
реактивам для	подходов по их	Допускаются	полностью недоступно
молекулярно-	решению.	отступления от норм	для понимания.
генетического	Способен	научного языка, при	Демонстрирует
анализа и	использовать	условии, что	выполнение тестовой
современному	специализированн	изложение ответа в	части меньше, чем на
оборудованию.	ые знания в	целом доступно для	50 процентов.
Владеет	области	понимания.	
принципами	биоинженерии в	Демонстрирует	
планирования	профессиональной	выполнение	
экспериментов с	деятельности.	тестовой части на 50	
использованием	Демонстрирует	и более процентов.	
методов	владение научным		
молекулярной	языком, хотя		
биологии и	допускаются		
генетической	отступления,		
инженерии. Умеет	изложение ответа		
в полном объеме	приводится		
решать	последовательно и		
ситуационные	доступно для		
задачи в рамках	понимания.		
дисциплины.	Демонстрирует		

Демонстрирует	выполнение
хорошее владение	тестовой части
научным языком,	задания на 65 и
изложение ответа	более процентов.
приводится	
последовательно и	
хорошо доступно	
для понимания.	
Демонстрирует	
выполнение	
тестовой части	
задания на 80 и	
более процентов.	

7 Основная учебная литература

- 1. Щелкунов С. Н. Генетическая инженерия : учебно-справочное пособие / С. Н. Щелкунов, 2017. 514.
- 2. Фаллер Д. М. Молекулярная биология клетки : руководство для врачей / Д. М. Фаллер, Д. Шилдс, 2012. 256.

8 Дополнительная учебная литература и справочная

- 1. Шмид Р. Наглядная биотехнология и генетическая инженерия / Р. Шмид, 2020. 324.
- 2. Основы молекулярной биологии клетки / Б. Альбертс, К. Хопкин, А. Джонсон [и др.], 2023. 796.
- 3. Биотехнология растений : учебник и практикум для вузов / Л. В. Назаренко, Ю. И. Долгих, Н. В. Загоскина, Г. Н. Ралдугина, 2021. 161.
- 4. Биотехнология : учебник для вузов по сельскохозяйственным, естественнонаучным, педагогическим, специальностям и магистерским программам / И. В. Тихонов [и др.]; под ред. Е. С. Воронина, 2008. 703.
- 5. Сельскохозяйственная биотехнология и биоинженерия : учебник для вузов по сельскохозяйственным, естественно-научным и педагогическим специальностям / под ред. В. С. Шевелухи, 2015. 700.
- 6. Биоинженерия : методические указания по выполнению лабораторных работ / Иркут. гос. техн. ун-т, 2014. 29.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/
- 3. https://www.ncbi.nlm.nih.gov/genbank/

11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем

- 1. Microsoft Windows Seven Professional [1x100] RUS (проведен апгрейд с Microsoft Windows Seven Starter [1x100]) поставка 2010
- 2. Microsoft Office Standard 2010_RUS_ поставка 2010 от ЗАО "СофтЛайн Трейд"
- 3. Свободно распространяемое программное обеспечение MEGA v. 11.0

12 Материально-техническое обеспечение дисциплины

1. 1. Проектор BENO MX661 2. Мультимедиа-проектор EB- X14G с ИБП, потолочное крепление и видеокабель 3. Настенный экран DaLite 175*234 4. Компьютер ICore 2Duo E4600/2Gb/160/GF 256Mb/FDD/DVD-RW/Samsung LCD 19