Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ **УНИВЕРСИТЕТ»**

Структурное подразделение «Теплоэнергетики»

УТВЕРЖДЕНА:

на заседании кафедры теплоэнергетики Протокол №7 от 10 марта 2025 г.

Рабочая программа дисциплины

«ТЕПЛОТЕХНИКА И ТЕПЛОЭНЕРГЕТИКА ГОРНЫХ ПРЕДПРИЯТИЙ»
C 21 05 04 F
Специальность: 21.05.04 Горное дело
Электрификация и автоматизация горного производства
Квалификация: Горный инженер (специалист)
Форма обучения: заочная

Документ подписан простой электронной подписью Составитель программы: Эйзлер Алла Михайловна Дата подписания: 04.06.2025 Документ подписан простой электронной подписью Утвердил: Самаркина Екатерина Владимировна

Дата подписания: 16.06.2025

Документ подписан простой электронной подписью Согласовал: Храмовских Виталий Александрович Дата подписания: 04.06.2025

- 1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы
- 1.1 Дисциплина «Теплотехника и теплоэнергетика горных предприятий» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ПКС-2 Способность рационально и без-опасно	
эксплуатиро-вать электромеханическое оборудование	
раз-личного функциональ-ного назначения при	ПКС-2.1
производстве работ по добыче и переработке твердых	
полезных ископаемых	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ПКС-2.1	Осуществляет инженерные расчеты и принимает участие в рациональной эксплуатации систем теплоэнергетики горнодобывающих предприятий	Знать Основные законы термодинамики и основные физикоматематические модели переноса теплоты и массы применительно к теплотехнологическим установкам Уметь Рассчитывать характеристики режимов работы теплотехнологического оборудования с целью их проектирования, совершенствования и рациональной эксплуатации. Владеть Основами расчета процессов переноса теплоты в теплотехнологическом оборудовании; основными методами и средствами проектирования типовых технологических процессов теплоэнергетики.

2 Место дисциплины в структуре ООП

Изучение дисциплины «Теплотехника и теплоэнергетика горных предприятий» базируется на результатах освоения следующих дисциплин/практик: «Математика», «Физика», «Химия»

Дисциплина является предшествующей для дисциплин/практик: «Организация энергетической службы», «Энергетический аудит»

3 Объем дисциплины

Объем дисциплины составляет – 3 ЗЕТ

Вид учебной работы	Трудоемкость в академических часах
	(Один академический час соответствует 45 минутам

	астрономического часа)						
	Всего	Учебн ый год № 5	Учебный год № 6				
Общая трудоемкость дисциплины	108	36	72				
Аудиторные занятия, в том числе:	14	2	12				
лекции	8	2	6				
лабораторные работы	0	0	0				
практические/семинарские занятия	6	0	6				
Самостоятельная работа (в т.ч. курсовое проектирование)	90	34	56				
Трудоемкость промежуточной аттестации	4	0	4				
Вид промежуточной аттестации (итогового контроля по дисциплине)	, Зачет, Курсовой проект		Зачет, Курсовой проект				

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Учебный год № <u>5</u>

	11		Видь	і конта	ктной ра	боты		<u> </u>	DC	Φ
N₂	Наименование	Лек	ции	J	IP	П3(0	CEM)	1		Форма
п/п	раздела и темы дисциплины	N₂	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Тема 1.1.Параметры состояния. Тема 1.2. Смеси газов Тема1.3.Теплоемк ость газов. Энтальпия. Тема 1.4.Первый закон термодинамики	1	1					2	10	Устный опрос
2	Тема 1.5.Основные термодинамическ ие процессы и их исследование. Тема 1.6.Второй закон термодинамики. Тема 1.7.Круговые циклы. Цикл Карно (прямой и обратный)	2	1					2	14	Устный опрос
	Промежуточная аттестация									

Всего	2			24	

Учебный год **№** <u>6</u>

	***		Виды контактной работы			боты			D.C.	_
N₂	Наименование	Лек	ции		IP		CEM)	1 C	PC	Форма
п/п	раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Тема 1.8. Компрессоры. Одноступенчатое и многоступенчатое сжатие. Тема 1.9.Двигатели внутреннего сгорания (ДВС). Циклы ДВС.	1	1			1	2	2, 3,	9	Решение задач
2	Тема 1.10.Теплопровод ность. Тема 1.11. Конвективный теплообмен	2	1					2, 4	3	Решение задач
3	Тема 1.12.Теплообмен излучением. Тема 1.13.Теплопереда ча. Тема 1.14.Теплообменн ые аппараты	3	1			2	2	2, 3,	9	Решение задач
4	.Тема 1.15.Топливо, его виды и характеристики. Тема 1.16 Горение топлива	4	1					1, 2, 4	13	Устный опрос
5	Тема 1.17. Котлы и котельные установки. Тема 1.18.Тепловой баланс котла. Тема 1.19.Технологиче ская схема ТЭС	5	2			3	2	1, 2, 3, 4	20	Устный опрос
	Промежуточная аттестация								4	Зачет, Курсовой проект
	Всего		6				6		58	•

4.2 Краткое содержание разделов и тем занятий

Учебный год № <u>5</u>

No	Тема	Краткое содержание
1	Тема 1.1.Параметры	Основные понятия и определения рабочего тела.
	состояния. Тема 1.2.	Уравнение состояния газа. Идеальный газ и его
	Смеси газов	газовая постоянная. Смеси газов. Способы задания
	Тема1.3.Теплоемкость	состава смеси, парциальное давление. Сущность

	газов. Энтальпия . Тема	закона Дальтона. Теплоемкость газов Уравнение
	1.4.Первый закон	Майера. Работа расширения (сжатия) тела.
	термодинамики	Основное свойство диаграммы PV.Первый закон
		термодинамики
2	Тема 1.5.Основные	Основные процессы идеального газа Анализ
	термодинамические	процессов с позиций первого закона
	процессы и их	термодинамики. Сущность второго закона
	исследование. Тема	термодинамики. Энтропия. Круговые процессы
	1.6.Второй закон	или циклы. Цикл Карно. Термический
	термодинамики. Тема	коэффициент прямого цикла Карно. Холодильный
	1.7.Круговые циклы.	коэффициент
	Цикл Карно (прямой и	
	обратный)	

Учебный год **№** <u>6</u>

N₂	Тема	Краткое содержание
1	Тема 1.8. Компрессоры.	Виды компрессоров по принципу действия.
	Одноступенчатое и	Идеальный одноступенчатый поршневой
	многоступенчатое	компрессор, работа компрессора.
	сжатие. Тема	Многоступенчатое сжатие.Двигатели внутреннего
	1.9.Двигатели	сгорания (ДВС), их разновидности, схемы и
	внутреннего сгорания	принципы действия. Цикл Отто (с подводом
	(ДВС). Циклы ДВС.	теплоты при V=const), Цикл Дизеля (с подводом
		теплоты при P=const) и цикл Тринклера (со
		смешанным подводом теплоты).
2	Тема	Основной закон теплопроводности-закон Фурье.
	1.10.Теплопроводность.	Расчетные формулы при стационарной
	Тема 1.11.	теплопроводности. Закон Ньютона-Рихмана.
	Конвективный	Факторы, влияющие на процесс теплоотдачи.
	теплообмен	Основы теории подобия. Теплоотдача при
		свободной и вынужденной конвекции.
3	Тема 1.12.Теплообмен	Законы теплового излучения. Сложный
	излучением. Тема	теплообмен и теплопередача. Теплопередача через
	1.13.Теплопередача.	различные стенки. Типы теплообменных
	Тема	аппаратов Тепловые расчеты теплообменных
	1.14.Теплообменные	аппаратов: конструктивные и поверочные
	аппараты	
4	.Тема 1.15.Топливо, его	Классификация топлива. Основные
	виды и характеристики.	характеристики топлива: влажность, зольность,
	Тема 1.16 Горение	выход летучих веществ, теплота сгорания топлива.
	топлива	Основы теории горения топлива.
5	Тема 1.17. Котлы и	Принцип работы барабанных и прямоточных
	котельные установки.	котлов. Тепловой баланс котельного агрегата.
	Тема 1.18.Тепловой	Основные элементы и принцип работы котельной
	баланс котла. Тема	установки. Принципиальная технологическая
	1.19.Технологическая	схема ТЭС.
	схема ТЭС	

4.3 Перечень лабораторных работ

4.4 Перечень практических занятий

Учебный год № <u>6</u>

No	Темы практических (семинарских) занятий	Кол-во академических часов
1	Компрессоры	2
2	Тепловой расчет теплообменных аппаратов	2
3	Технологическая схема ТЭС	2

4.5 Самостоятельная работа

Учебный год № <u>5</u>

N₂	Вид СРС	Кол-во академических часов
1	Написание курсового проекта (работы)	10
2	Проработка разделов теоретического материала	24

Учебный год № 6

N₂	Вид СРС	Кол-во академических часов
1	Написание курсового проекта (работы)	20
2	Подготовка к зачёту	10
3	Подготовка к практическим занятиям	10
4	Проработка разделов теоретического материала	16

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: дискуссия, проектный метод.

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по курсовому проектированию/работе:

.Ермаков Р.Л., Захарьева Н.Г. Расчет тепловой схемы паровой котельной для выбора основного оборудования: :методические указания к курсовому и дипломному проектированию для студентов по очной и заочной форме обучения/ ИРГТУ,2006 – 49 с.

5.1.2 Методические указания для обучающихся по практическим занятиям

- 1. .Захарьева Н. Г. Техническая термодинамика и теплопередача: учебное пособие / Н. Г. Захарьева, В. А. Начигин, 2013. 171с
- 2. Панкратов Г.П. Сборник задач по теплотехнике: учеб. пособие для неэнергетических специальностей вузов/Г.П. Панкратов, 1986-247с

5.1.3 Методические указания для обучающихся по самостоятельной работе:

Теоретические основы теплотехники [Текст] : метод. указания по выполнению курсовой работы / Иркут. гос. техн. ун-т; сост. Домрачев Б. П. Ч. 2 : Тепломассообмен. Тепловой расчет пароводяных теплообменных аппаратов ТЭС, 2007. – 27 с. http://elib.istu.edu/viewer/view.php?file=/files/er-9671.pdf

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 учебный год 5 | Устный опрос

Описание процедуры.

Преподаватель задает вопросы по заданным темам и проводит устный опрос в диалоговом режиме вопрос-ответ.

Тема 1.15. Технологическая схема ТЭС

Пример задания:

- 1. Назовите основные элементы схемы ТЭС.
- 2. Какие виды энергии получаете на ТЭС?
- 3. Каково назначение турбины?
- 4.Для чего служит конденсатор?
- 5.Для чего служит деаэратор?
- 6. Какое устройство создает тягу для выброса дымовых газов?

Тема 1.16. Топливо, его виды и характеристики

Пример задания:

Вопросы для контроля:

- 1. Что называется топливом?
- 2. Какие виды топлива существуют?
- 3.Состав топлива.
- 4 Что является внутренним и внешним балластом топлива?
- 5. Что называется теплотой сгорания топлива?
- 6.Процесс горения топлива.

Тема 1.17. Котлы и котельные установки. Тепловой баланс котла

Пример задания:

- 1.Классификация котельных агрегатов.
- 2. Что называется котельной установкой?
- 3.Для чего служит экономайзер?
- 4. Что находится в конвективной шахте котла?
- 5. Что называется тепловым балансом котла?
- 6.КПД "брутто" и "нетто" котла

Критерии оценивания.

Правильные ответы на поставленные вопросы. Устный опрос показывает насколько студент освоил теоретический материал

6.1.2 учебный год 6 | Решение задач

Описание процедуры.

Преподаватель на практических занятиях дает студентам 5-6 задач для самостоятельного решения. Перед решением задач преподаватель задает вопросы по заданной теме с целью

готовности студентов к решению задач, намечается ход решения задач. В ходе решения происходит индивидуальное собеседование по решаемым задачам

Критерии оценивания.

Усвоение теоретического материала и применение знаний к решению задач. Анализ полученных результатов.

6.1.3 учебный год 6 | Устный опрос

Описание процедуры.

Преподаватель задает вопросы по заданным темам и проводит устный опрос в диалоговом режиме вопрос-ответ.

Тема 1.15. Технологическая схема ТЭС

Пример задания:

- 1.Назовите основные элементы схемы ТЭС.
- 2. Какие виды энергии получаете на ТЭС?
- 3.Каково назначение турбины?
- 4.Для чего служит конденсатор?
- 5.Для чего служит деаэратор?
- 6. Какое устройство создает тягу для выброса дымовых газов?

Тема 1.16. Топливо, его виды и характеристики

Пример задания:

Вопросы для контроля:

- 1. Что называется топливом?
- 2.Какие виды топлива существуют?
- 3.Состав топлива.
- 4 Что является внутренним и внешним балластом топлива?
- 5. Что называется теплотой сгорания топлива?
- 6.Процесс горения топлива.

Тема 1.17. Котлы и котельные установки. Тепловой баланс котла

Пример задания:

- 1.Классификация котельных агрегатов.
- 2. Что называется котельной установкой?
- 3.Для чего служит экономайзер?
- 4. Что находится в конвективной шахте котла?
- 5. Что называется тепловым балансом котла?
- 6.КПД "брутто" и "нетто" котла

Критерии оценивания.

Правильные ответы на поставленные вопросы. Устный опрос показывает насколько студент освоил теоретический материал

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной
-------------------------------------	---------------------	---

		аттестации
ПКС-2.1	Осуществляет инженерные расчеты	Решение задач,
	характеристик режимов работы	выполнение и
	теплотехнического оборудования с	защита курсового
	целью их проектирования,	проекта, устный
	совершенствования и рациональной	опрос, зачет
	эксплуатации.	
	Знает основы расчета процессов	
	переноса теплоты в теплотехническом	
	оборудовании	

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Учебный год 6, Типовые оценочные средства для курсовой работы/курсового проектирования по дисциплине

6.2.2.1.1 Описание процедуры

Преподаватель дает каждому студенту варианты исходных данных для выполнения расчета тепловой схемы с пояснением каждого пункта расчета. Защита курсового проекта проходит в форме устного изложения и последующего собеседования по вопросам

Пример задания:

Тема: Расчет тепловой схемы котельной горного предприятия

Исходные данные:

- 1. Маркировка котла.
- 2.Расход пара на технологические нужды, т/ч.
- 3. Расход теплоты на нужды отопления, вентиляции, горячее водоснабжение, МВт.
- 4.Температура питательной воды, t°C
- 5.Температура сетевой воды, t°C

Порядок расчета:

- 1. Определение расхода воды и пара на подогреватели сетевой воды.
- 2. Расход редуцированного пара внешним потребителям.
- 3.Суммарный расход свежего пара внешним потребителям.
- 4. Расход пара на собственные нужды котельной, на мазутное хозяйство и покрытие потерь в котельной.
- 5. Расходы химически очищенной воды, сырой воды.
- 6. Расход пара на подогреватели сырой воды.
- 7. Действительная паропроизводительность котельной.
- 8.Определение количества котлов в котельной.
- 9. Расчет объемов воздуха и продуктов сгорания топлива.
- 10. Расчет энтальпий воздуха и продуктов сгорания.
- 11.Тепловой баланс котельного агрегата.

Критерии оценки: правильный расчет по всем пунктам и оформление курсового проекта с учетом требований действующего стандарта ИРНИТУ.

Примерный перечень вопросов для защиты курсового проекта

- 1.Принцип работы тепловой схемы котельной..
- 2. Из каких основных элементов состоит тепловая схема котельной?
- 3. Назначение каждого элемента котельной...
- 4. Какая вода называется химически очищенной, сырой, питательной?

- 5.В чем состоит расчет объемов воздуха и продуктов сгорания топлива?
- 6.Как производился расчет энтальпий воздуха и продуктов сгорания топлива?
- 7.Основные статьи теплового баланса котельного агрегата.
- 8.Что называется КПД «брутто» и КПД «нетто»?
- 9. Какая система теплоснабжения называется открытой, а какая закрытой_

6.2.2.1.2 Критерии оценивания

Отлично	Хорошо	Удовлетворительн о	Неудовлетворительно
Курсовой проект	Курсовой проект	Курсовой проект	Пояснительная записка
выполнен в	выполнен в	выполнен в полном	составлена без учета
полном объеме и в	полном объеме и в	объеме и в	требований
соответствии с	соответствии с	соответствии с	действующего
заданием.	заданием.	заданием.	стандарта ИРНИТУ.
Пояснительная	Пояснительная	Пояснительная	Расчеты выполнены с
записка	записка	записка составлена с	существенными
составлена с	составлена с	учетом требований	ошибками.
учетом	учетом	действующего	Графическая часть
требований	требований	стандарта ИРНИТУ,	выполнена с
действующего	действующего	но с замечаниями.	отклонениями от
стандарта	стандарта	Расчеты выполнены	требований ЕСКД Во
ИРНИТУ. Расчеты	ИРНИТУ. Расчеты	с небольшими	время защиты
верны, сделаны	верны, сделаны	ошибками.	обучающийся не
обоснованные	обоснованные	Графическая часть	ответил на две трети
выводы.	выводы.	выполнена с	поставленных
Графическая часть	Графическая часть	отклонениями от	вопросов
выполнена в	выполнена в	требований ЕСКД.	
полном объеме с	полном объеме с	Во время защиты	
соблюдением всех	соблюдением всех		
требований ЕСКД.	требований ЕСКД.		
Во время защиты	Во время защиты		
обучающийся	обучающийся		
коротко и верно	недостаточно		
ответил на	точно ответил на		
поставленные	поставленные		
вопросы.	вопросы.		

6.2.2.2 Учебный год 6, Типовые оценочные средства для проведения зачета по дисциплине

6.2.2.2.1 Описание процедуры

Перед сдачей зачета студенту необходимо выполнить и защитить курсовой проект, решить все задачи на практических занятиях Самостоятельно изучить теоретическую часть дисциплины с использованием конспекта лекций, учебников, учебных пособий, рекомендованных преподавателем. Зачет проводится в устной форме. Преподаватель задает вопросы в рамках учебного материала и оценивает ответы на вопросы

Пример задания:

Примерный перечень вопросов к зачету:

- 1. Значимость изучаемых в курсе тепловых процессов и теплового оборудования применяемого в данной отрасли.
- 2. Термические и калорические параметры состояния рабочего тела.
- 3. Основные законы и уравнение состояния идеального газа.
- 4. Взаимный пересчет массовой, мольной и объемной теплоемкостей.
- 5. Способы задания газовых смесей и формулы пересчета массовых, объемных и мольных долей.
- 6. Закон Дальтона.
- 7. Понятие парциального давления и приведенного объема.
- 8. Как определить молекулярную массу, газовую постоянную и теплоемкость газовой смеси, если она задана массовыми и объемными долями?
- 9. Как определить парциальное давление через массовые и объемные доли?
- 10. Объяснить сущность и дать основные формулировки первого закона термодинамики.
- 11. Аналитическое выражение первого закона термодинамики через внутреннюю энергию и энтальпию.
- 12. Характеристика основных составляющих первого закона и расчетные формулы.
- 13. Физический смысл энтальпии и ее определение.
- 14. Основные термодинамические процессы изменения состояния газа.
- 15. Свойства диаграммы ру и изображение в ней всех термодинамических процессов.
- 16. Сущность и основные формулировки второго закона термодинамики.
- 17. Свойства диаграммы Тѕ и изображение в ней всех термодинамических процессов.
- 18. Что такое круговой процесс и как оценить эффективность протекания прямых и обратных циклов?
- 19. Прямой и обратный циклы Карно в диаграмме р v и Т s и их анализ.
- 20. Компрессоры. Одноступенчатое и многоступенчатое сжатие
- 21. Двигатели внутреннего сгорания (ДВС). Циклы ДВС
- 22. Основные способы переноса тепла.
- 23. Температурное поле, изотермическая поверхность, градиент температуры.
- 24. Закон Фурье и его применение к телам простой геометрической формы.
- 25. Коэффициент теплопроводности
- 26. Процесс теплоотдачи. Закон Ньютона-Рихмана, коэффициент теплоотдачи.
- 27. Основные критерии теплового подобия и их физический смысл.
- 28. Общий вид критериальных уравнений для свободной и вынужденной конвекции.
- 29. Тепловой баланс лучистого теплообмена.
- 30. Законы: Планка, Вина, Стефана-Больцмана, Кирхгофа.
- 31. Что называется теплопередачей? Расчетное уравнение теплопередачи, коэффициент теплопередачи.
- 32. Расчетные формулы теплопроводности различных стенок
- 33. Типы теплообменных аппаратов
- 34. Основные расчетные уравнения теплообменных аппаратов
- 35. Классификация топлива
- 36. Основные характеристики топлива
- 37. Основные элементы котельного агрегата
- 38. Технологическая схема ТЭС

6.2.2.2. Критерии оценивания

Зачтено	Не зачтено
Своевременно выполнил курсовой проект.	Студент не выполнил курсовой проект. Не

Решил все задачи на практических занятиях Демонстрирует знание основных законов и понятий теплотехники. Студент способен применять инженерные расчеты в своей профессиональной деятельности

решил задачи на практических занятиях. Не демонстрирует знание основных законов и понятий теплотехники. Не способен применять инженерные расчеты в своей профессиональной деятельности

7 Основная учебная литература

- 1. Захарьева Н. Г. Источники и системы теплоснабжения предприятий [Электронный ресурс]: курс лекций / Н. Г. Захарьева, Р. Л. Ермаков, 2008. 86.
- 2. Захарьева. Технология централизованного производства электрической и тепловой энергии : курс лекций. Ч. 1 : Системы теплоснабжения, 2012. 84.
- 3. Нащокин В. В. Техническая термодинамика и теплопередача: учебное пособие для неэнергетических специальностей вузов / В. В. Нащокин, 2009. 468.

8 Дополнительная учебная литература и справочная

- 1. Захарьева Н. Г. Технология централизованного производства электрической и тепловой энергии [Электронный ресурс]: курс лекций для студентов, обучающихся по направлению 140100 "Теплоэнергетика специальности 140101 "Тепловые электрические станции" дневной и заочной форм обучения / Н. Г. Захарьева, Р. Л. Ермаков, 2008. 84.
- 2. Захарьева Н. Г. Источники и системы теплоснабжения. Тепловые сети : учебное пособие / Н. Г. Захарьева, Н. Е. Буйнов, 2016. 165.
- 3. Панкратов Г.П. Сборник задач по теплотехнике : учеб. пособие для неэнергет. специальностей вузов / Г.П. Панкратов, 1986. 247.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/

11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем

1. Свободно распространяемое программное обеспечение 1. Microsoft Windows (Подписка DreamSpark Premium Electronic Software Delivery (3 years). Сублицензионный договор №14527/MOC2957 от 18.08.16г.) 2. Microsoft Office

12 Материально-техническое обеспечение дисциплины

- 1. Мультимедиа-проектор Acer X1261 DLP
- 2. Экран CHAPMPION 206*274

- 3. Монитор Samsung SyncMaster 710
- 4. экран 213*280 моториз Projecta