Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ **УНИВЕРСИТЕТ»**

Структурное подразделение «Сибирская школа геонаук»

УТВЕРЖДЕНА:

на заседании ДОТ Протокол №29 от 10 апреля 2025 г.

Рабочая программа дисциплины

«МНОГОМЕРНОЕ КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ»
Специальность: 21.05.03 Технология геологической разведки
Опециальность, 21.00.00 технология теской разведии
Геофизические информационные системы
Квалификация: Горный инженер-геофизик
Форма обучения: очная

Документ подписан простой электронной подписью Составитель программы: Ланько Анна Викторовна Дата подписания: 29.06.2025 Документ подписан простой электронной подписью Утвердил: Ланько Анна Викторовна

Дата подписания: 29.06.2025

Документ подписан простой электронной подписью Согласовал: Паршин Александр Вадимович Дата подписания: 14.07.2025

- 1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы
- 1.1 Дисциплина «Многомерное компьютерное моделирование» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ПК-4 Способен внедрять программно-	
информационное обеспечение технологических	
процессов геофизических работ, обработки	
полученных данных и корректировать эти процессы в	ПК-4.10
зависимости от поставленных геологических и	
технологических задач; Оценивать риски внедрения	
научно-технических достижений и передового опыта	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ПК-4.10	Демонстрация навыков многомерного компьютерного моделирования при обработки полученных данных в зависимости от поставленных геологических и технологических задач	Знать Основные понятия и принципы многомерного компьютерного моделирования: виды моделей, этапы построения, критерии адекватности моделей, особенности моделирования геологических и технологических процессов Уметь Выполнять обработку, анализ и интерпретацию многомерных данных с использованием специализированного программного обеспечения, строить прогнозные модели и выявлять зависимости между параметрами Владеть Практическими навыками работы с современными программными программными программными продуктами для многомерного моделирования и анализа данных в геофизических информационных системах (например, специализированные ГИС-платформы, пакеты статистического анализа, инструменты визуализации). Навыками самостоятельной работы по созданию, адаптации и применению компьютерных моделей для решения профессиональных задач в области технологии геологической разведки

2 Место дисциплины в структуре ООП

Изучение дисциплины «Многомерное компьютерное моделирование» базируется на результатах освоения следующих дисциплин/практик: «Моделирование систем и процессов»

Дисциплина является предшествующей для дисциплин/практик: «Производственная практика: преддипломная практика»

3 Объем дисциплины

Объем дисциплины составляет – 4 ЗЕТ

Вид учебной работы	Трудоемкость в академических часах (Один академический час соответствует 45 минутам астрономического часа)		
	Всего Семестр		
Общая трудоемкость дисциплины	144	144	
Аудиторные занятия, в том числе:	72	72	
лекции	36	36	
лабораторные работы	36	36	
практические/семинарские занятия	0	0	
Самостоятельная работа (в т.ч. курсовое проектирование)	72	72	
Трудоемкость промежуточной аттестации	0	0	
Вид промежуточной аттестации (итогового контроля по дисциплине)	Зачет	Зачет	

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр № 9

	Hamsanananan		Виды контактной работы					CPC		Ф
No	Наименование	Лекции		J.	ЛР		ПЗ(СЕМ)		PC	Форма
п/п раздела и тем дисциплинь	раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	N₂	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	1. Введение в многомерное компьютерное моделирование. Повторение основных понятий и терминов	1	2	1	2					Устный опрос
2	2.Основы многомерного анализа данных в моделировании	2	4	2	2					Устный опрос
3	3. Многомерные математические модели: построение и	3	4	3	4					Устный опрос

	анализ								
4	4. Имитационное моделирование многомерных процессов	4	4	4	4				Устный опрос
5	5. Методы обработки и интерпретации многомерных данных	5	4	5	6		3	10	Устный опрос
6	6. Компьютерные технологии и программные средства многомерного моделирования	6	6	6	6		3	10	Устный опрос
7	7. Решение геологических и технологических задач средствами многомерного моделирования	7	6	7	6		1, 2, 3	32	Устный опрос
8	8. Проектирование и проведение комплексных вычислительных экспериментов	8	6	8	6		3, 4	20	Устный опрос
	Промежуточная аттестация								Зачет
	Всего		36		36			72	

4.2 Краткое содержание разделов и тем занятий

Семестр № 9

No	Тема	Краткое содержание
1	1. Введение в	Краткое повторение ключевых понятий, методов и
	многомерное	этапов моделирования систем и процессов: виды
	компьютерное	моделей, этапы моделирования, классификация
	моделирование.	систем и моделей, методы математического и
	Повторение основных	имитационного моделирования. Обзор
	понятий и терминов	применяемых программных средств
2	2.Основы	Введение в методы многомерного анализа:
	многомерного анализа	основные подходы к обработке и визуализации
	данных в	многомерных данных, типы данных,
	моделировании	используемых в геологических и технологических
		задачах.
3	3. Многомерные	Построение многомерных моделей на основе
	математические	реальных геологоразведочных и технологических
	модели: построение и	данных. Методы параметризации, идентификации
	анализ	и валидации моделей.
4	4. Имитационное	Разработка и применение имитационных моделей
	моделирование	для анализа сложных многомерных процессов.
	многомерных	Использование специализированных программных
	процессов	пакетов для проведения вычислительных
		экспериментов

5	5. Методы обработки и	Статистические и вычислительные методы
	интерпретации	обработки результатов моделирования:
	многомерных данных	корреляционный, факторный, кластерный анализ,
		визуализация результатов.
6	6. Компьютерные	Обзор современных программных комплексов и
	технологии и	пакетов прикладных программ для многомерного
	программные средства	моделирования (Micromine, ГИС-платформы и
	многомерного	др.), их интеграция в учебный и
	моделирования	исследовательский процесс
7	7. Решение	Практические кейсы: моделирование залежей,
	геологических и	прогнозирование свойств пластов, оптимизация
	технологических задач	технологических процессов на основе
	средствами	многомерных моделей.
	многомерного	
	моделирования	
8	8. Проектирование и	Планирование, реализация и анализ комплексных
	проведение	вычислительных экспериментов с использованием
	комплексных	многомерных моделей. Оценка эффективности,
	вычислительных	интерпретация и оформление результатов
	экспериментов	

4.3 Перечень лабораторных работ

Семестр № <u>9</u>

No	Наименование лабораторной работы	Кол-во академических часов
1	1. Введение. Повторение и нормализация	2
1	данных, подготовка к многомерному анализу	2
2	2. Одномерный и двумерный статистический	2
	анализ геологических данных	2
3	3. Многомерный корреляционный анализ и	4
3	множественная регрессия	4
4	4. Кластерный анализ геологических данных	4
5	5. Метод главных компонент (РСА) в	6
5	геологических исследованиях	O
6	6. Построение цифровых моделей и	6
0	визуализация многомерных данных	O
7	7. Геостатистический анализ и	6
/	пространственное моделирование	O
o	8. Комплексное многомерное моделирование	6
8	для решения геолого-технологической задачи	6

4.4 Перечень практических занятий

Практических занятий не предусмотрено

4.5 Самостоятельная работа

Семестр № 9

№ Вид СРС	Кол-во академических
-----------	----------------------

		часов
1	Оформление отчетов по лабораторным и практическим работам	10
2	Подготовка к зачёту	12
3	Подготовка к практическим занятиям (лабораторным работам)	40
4	Проработка разделов теоретического материала	10

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: Дискуссия

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по лабораторным работам:

Лабораторная работа №1

Название: Введение. Повторение и нормализация данных, подготовка к многомерному анализу

Цель: Освоить методы предварительной обработки и нормализации геологических данных для последующего многомерного анализа.

Задачи:

Повторить основные этапы обработки данных

Научиться выявлять и устранять выбросы

Провести нормализацию данных различными способами

Необходимые теоретические знания:

Понятие нормализации и стандартизации данных

Основы статистической обработки

Методы выявления выбросов

Ход выполнения работы:

Ознакомьтесь с исходным набором геологических данных

Проведите первичный анализ: расчет средних, стандартных отклонений, построение гистограмм

Выявите и устраните выбросы

Выполните нормализацию данных (min-max, z-score)

Подготовьте обработанные данные для дальнейшего анализа

Материалы для отчёта:

Краткое описание исходных данных

Результаты первичного анализа

Описание и результаты нормализации

Таблицы и графики до и после обработки

Рекомендации для оформления отчёта:

Соблюдайте структуру: цель, задачи, теория, ход работы, результаты, выводы

Все графики и таблицы должны иметь подписи

Оформляйте отчёт по требованиям ГОСТ

Контрольные вопросы:

Какие существуют методы нормализации данных?

Зачем устранять выбросы перед анализом?

Как влияет нормализация на результаты многомерного моделирования?

Список литературы: рекомендации для студента

Оформляйте список литературы по стандартам ГОСТ (например, ГОСТ Р 7.0.5–2008)

Включайте только реально использованные источники

Располагайте записи в алфавитном порядке

Указывайте для каждого источника: автора, полное название, место и год издания,

количество страниц (или DOI для статей)

Включайте ссылки на все источники, используемые в отчёте

Пример оформления можно найти в СТО-005-2020

Лабораторная работа №2

Название: Одномерный и двумерный статистический анализ геологических данных

Цель: Научиться применять методы одномерного и двумерного статистического анализа к геологическим данным.

Задачи:

Построить гистограммы распределения

Провести корреляционный анализ

Построить диаграммы рассеяния

Необходимые теоретические знания:

Основы теории вероятностей

Понятие корреляции

Визуализация данных

Ход выполнения работы:

Проведите анализ распределения каждого параметра

Постройте гистограммы и диаграммы рассеяния

Рассчитайте коэффициенты корреляции

Сделайте выводы о взаимосвязях параметров

Материалы для отчёта:

Гистограммы и диаграммы рассеяния

Корреляционные матрицы

Краткие выводы

Рекомендации для оформления отчёта:

Используйте четкие подписи к графикам

Все расчеты сопровождайте пояснениями

Соблюдайте требования к оформлению отчёта

Контрольные вопросы:

Как определить наличие корреляции между признаками?

Чем отличается диаграмма рассеяния от гистограммы?

Какие выводы можно сделать по результатам корреляционного анализа?

Список литературы: рекомендации для студента

Оформляйте по ГОСТ

Включайте только реально использованные источники

Приводите ссылки на учебники, статьи, интернет-ресурсы, используемые в работе Пример оформления ищите в методических указаниях кафедры

Лабораторная работа №3

Название: Многомерный корреляционный анализ и множественная регрессия

Цель: Освоить методы многомерного корреляционного анализа и построения

множественных регрессионных моделей.

Задачи:

Построить корреляционную матрицу

Выполнить множественную линейную регрессию

Оценить качество модели

Необходимые теоретические знания:

Основы корреляционного анализа

Принципы множественной регрессии

Критерии качества моделей

Ход выполнения работы:

Сформируйте матрицу корреляций

Постройте модель множественной регрессии

Оцените значимость коэффициентов

Проанализируйте остатки и качество модели

Материалы для отчёта:

Корреляционная матрица

Уравнение регрессии

Оценка качества модели

Графики остатков

Рекомендации для оформления отчёта:

Все формулы приводите с пояснениями

Графики снабжайте подписями

Соблюдайте структуру отчёта

Контрольные вопросы:

Как интерпретировать коэффициенты регрессии?

Что такое мультиколлинеарность?

Как оценить качество регрессионной модели?

Список литературы: рекомендации для студента

Следуйте стандарту ГОСТ

Включайте только реально использованные источники

Делайте ссылки на все источники, используемые в отчёте

Лабораторная работа №4

Название: Кластерный анализ геологических данных

Цель: Научиться применять методы кластерного анализа для группировки геологических объектов.

Задачи:

Провести кластеризацию методом k-средних

Интерпретировать результаты кластеризации

Оценить качество разбиения на кластеры

Необходимые теоретические знания:

Основы кластерного анализа

Методы оценки качества кластеризации

Интерпретация результатов

Ход выполнения работы:

Подготовьте данные для кластеризации

Проведите кластеризацию методом k-средних

Визуализируйте результаты

Проанализируйте полученные кластеры

Материалы для отчёта:

Описание метода кластеризации

Результаты кластеризации (таблицы, графики)

Выводы по интерпретации кластеров

Рекомендации для оформления отчёта:

Четко структурируйте разделы

Используйте цветовую маркировку на графиках

Соблюдайте требования к оформлению

Контрольные вопросы:

Как выбрать оптимальное число кластеров?

Какие методы оценки качества кластеризации существуют?

Как интерпретировать результаты кластеризации?

Список литературы: рекомендации для студента

Оформляйте по ГОСТ

Включайте только реально использованные источники

Делайте ссылки на все источники, используемые в отчёте

Пример оформления — в методических материалах кафедры

Лабораторная работа №5

Название: Метод главных компонент (РСА) в геологических исследованиях

Цель: Освоить применение метода главных компонент для снижения размерности данных.

Задачи:

Выполнить расчет главных компонент

Визуализировать данные в новых осях

Проанализировать вклад признаков

Необходимые теоретические знания:

Теория метода главных компонент

Применение РСА для анализа данных

Интерпретация результатов

Ход выполнения работы:

Проведите предварительную обработку данных

Выполните РСА

Постройте графики распределения объектов по главным компонентам

Проанализируйте вклад исходных признаков

Материалы для отчёта:

Таблицы собственных значений и векторов

Графики распределения

Выводы по результатам анализа

Рекомендации для оформления отчёта:

Используйте пояснения к каждому этапу

Графики снабжайте подписями

Соблюдайте структуру и требования оформления

Контрольные вопросы:

Для чего применяется РСА?

Как определить число значимых компонент?

Как интерпретировать вклад признаков?

Список литературы: рекомендации для студента

Оформляйте по ГОСТ

Включайте только реально использованные источники

Делайте ссылки на все источники, используемые в отчёте

Пример оформления — в методических материалах кафедры

Лабораторная работа №6

Название: Построение цифровых моделей и визуализация многомерных данных в ГИС (Micromine)

Цель: Освоить построение цифровых моделей и визуализацию многомерных данных в программном обеспечении Micromine.

Задачи:

Загрузить и подготовить данные в Micromine

Построить цифровую модель

Визуализировать результаты

Необходимые теоретические знания:

Основы работы с ГИС

Принципы построения цифровых моделей

Визуализация данных в Micromine

Ход выполнения работы:

Ознакомьтесь с интерфейсом Micromine

Загрузите подготовленные данные

Постройте цифровую модель месторождения

Выполните визуализацию скважин и параметров

Материалы для отчёта:

Скриншоты интерфейса и моделей

Описание этапов работы

Выводы по результатам моделирования

Рекомендации для оформления отчёта:

Все изображения должны быть подписаны

Описывать каждый этап работы

Соблюдать требования к оформлению

Контрольные вопросы:

Какие типы моделей можно строить в Micromine?

Какие преимущества цифрового моделирования?

Как осуществляется визуализация данных?

Список литературы: рекомендации для студента

Оформляйте по ГОСТ

Включайте только реально использованные источники

Делайте ссылки на все источники, используемые в отчёте

Лабораторная работа №7

Название: Геостатистический анализ и пространственное моделирование

Цель: Освоить методы геостатистического анализа и пространственного моделирования геологических параметров.

Задачи:

Построить вариограммы

Выполнить моделирование распределения параметров

Интерпретировать пространственные закономерности

Необходимые теоретические знания:

Основы геостатистики

Построение и анализ вариограмм

Пространственное моделирование

Ход выполнения работы:

Подготовьте данные для анализа

Постройте вариограммы

Выполните моделирование распределения

Проанализируйте полученные результаты

Материалы для отчёта:

Вариограммы

Карты распределения параметров

Выводы по пространственным закономерностям

Рекомендации для оформления отчёта:

Все графики и карты должны быть подписаны

Подробно описывать этапы анализа

Соблюдать требования к оформлению

Контрольные вопросы:

Что такое вариограмма и как она строится?

Какие задачи решает геостатистика?

Как интерпретировать результаты пространственного моделирования?

Список литературы: рекомендации для студента

Оформляйте по ГОСТ

Включайте только реально использованные источники

Делайте ссылки на все источники, используемые в отчёте

Лабораторная работа №8

Название: Комплексное многомерное моделирование для решения геолого-

технологической задачи

Цель: Научиться интегрировать методы многомерного моделирования для решения

комплексной геолого-технологической задачи.

Задачи:

Выбрать и обосновать методы анализа

Построить комплексную модель

Проанализировать и интерпретировать результаты

Необходимые теоретические знания:

Методы многомерного анализа

Принципы построения комплексных моделей

Оформление результатов моделирования

Ход выполнения работы:

Определите задачу моделирования

Подготовьте и проанализируйте данные

Примените выбранные методы анализа

Постройте и проанализируйте комплексную модель

Оформите результаты

Материалы для отчёта:

Описание задачи

Ход анализа и моделирования

Результаты и их интерпретация

Выводы

Рекомендации для оформления отчёта:

Четко структурировать отчёт

Все этапы работы описывать подробно

Соблюдать требования к оформлению

Контрольные вопросы:

Как выбрать методы анализа для комплексной задачи?

Какие этапы включает комплексное моделирование?

Как оценить эффективность построенной модели?

Список литературы: рекомендации для студента

Оформляйте по ГОСТ

Включайте только реально использованные источники

Делайте ссылки на все источники, используемые в отчёте

5.1.2 Методические указания для обучающихся по самостоятельной работе:

- 1. Рекомендации по самостоятельной подготовке к лабораторным работам
- Изучите теоретический материал по теме лабораторной работы.

Ознакомьтесь с учебниками, лекциями и дополнительными источниками, чтобы понимать цели и задачи работы, основные понятия и методы, используемые в лабораторном задании 910.

• Внимательно ознакомьтесь с методическими указаниями и требованиями к лабораторной работе.

Обратите внимание на последовательность выполнения этапов, используемое программное обеспечение, форматы исходных и выходных данных, требования к визуализации и анализу результатов 10.

• Подготовьте исходные данные.

Проверьте наличие всех необходимых файлов, убедитесь в их корректности (форматы, структура, отсутствие ошибок и пропусков данных).

- Освойте необходимые функции и инструменты программного обеспечения. Повторите работу с теми модулями и инструментами, которые будут использоваться в лабораторной работе (например, Excel, Statistica, R, Micromine, Surfer, QGIS, Python и др.).
- Планируйте время.

Разделите выполнение работы на этапы: подготовка данных, выполнение анализа, оформление визуализации, написание отчета.

- 2. Рекомендации по оформлению отчетов по лабораторным работам
- Структурируйте отчет по стандартной схеме:
- Титульный лист (название работы, ФИО, группа, дата)
- Цель работы
- Краткое описание исходных данных
- Описание используемых методов и программного обеспечения
- Последовательное изложение этапов работы с иллюстрациями (скриншотами, графиками, картами)
- Анализ полученных результатов (выявленные особенности, сравнение с теорией, интерпретация)
- Выводы и рекомендации
- Список использованных источников 10
- Используйте качественные иллюстрации.

Все графические материалы должны быть четкими, снабжены подписями, масштабами, легендами и пояснениями.

• Формулируйте выводы по существу.

Кратко и ясно отражайте основные результаты работы, выявленные закономерности, достоинства и ограничения применяемых методов.

• Оформляйте отчет в соответствии с требованиями кафедры или учебного

заведения.

Соблюдайте стандарты оформления текста, таблиц, рисунков и ссылок на источники.

- 3. Рекомендации по самостоятельной проработке отдельных разделов тем
- Изучайте рекомендованную литературу и дополнительные источники. Используйте учебники, статьи, электронные ресурсы, профессиональные базы данных и справочные материалы, указанные в рабочей программе дисциплины.
- Выполняйте конспектирование ключевых понятий и алгоритмов. Составляйте краткие записи по основным определениям, алгоритмам, этапам работы с программным обеспечением, особенностям визуализации и анализа данных.
- Практикуйтесь в самостоятельном выполнении типовых заданий. Решайте задачи, связанные с обработкой и визуализацией геолого-геофизических данных, используя различные программные средства.
- Формулируйте вопросы и уточнения для обсуждения на занятиях. Записывайте непонятные моменты, чтобы получить разъяснения у преподавателя или в ходе дискуссии.
- Анализируйте примеры из практики.

Изучайте реальные кейсы внедрения компьютерных технологий, сравнивайте разные подходы и делайте выводы о целесообразности их применения.

- 4. Общие рекомендации
- Развивайте навыки поиска и критического анализа информации. Пользуйтесь современными информационными ресурсами, анализируйте достоверность и актуальность найденных данных.
- Акцентируйте внимание на интеграции знаний и умений. Старайтесь связывать теоретические знания с практическими задачами, анализируйте, как выбранные методы и технологии влияют на качество и достоверность графического представления информации.
- Соблюдайте академическую честность. Все результаты, представленные в отчетах, должны быть получены самостоятельно, с обязательным указанием источников заимствованных данных и иллюстраций.

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 семестр 9 | Устный опрос

Описание процедуры.

Опрос может проводиться:

Фронтально — в форме беседы с группой, когда вопросы задаются всей группе, а ответы даются по очереди или по желанию.

Индивидуально — каждый студент отвечает на один или несколько вопросов, давая развернутый, связный ответ, часто с примерами и пояснениями.

Комбинированно — сочетаются оба подхода, а также используются дополнительные методы (например, письменные карточки, рецензирование ответов товарищей)

Критерии оценивания.

полнота и правильность ответа; понимание и осознанность материала;

логичность и последовательность изложения; корректность терминологии; способность отвечать на уточняющие вопросы

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Средств (методы Критерии оценивания оцениван промежуточ аттестаці			
ПК-4.10	Демонстрация навыков многомерного	устное		
	компьютерного моделирования при	собеседование по		
	обработки полученных данных в	теоретическим		
	зависимости от поставленных	вопросам		
	геологических и технологических			
	задач			

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 9, Типовые оценочные средства для проведения зачета по дисциплине

6.2.2.1.1 Описание процедуры

Зачет сдается в период экзаменационной сессии, предусмотренной учебным планом и календарным учебным графиком.

Студенты допускаются к сдаче зачета по дисциплине при выполнении всех запланированных форм текущего контроля согласно рабочей программе дисциплины. На зачет студент должен явиться с зачетной книжкой. Зачет проводится в устной форме. Вопросы для зачета

- 1. Дайте определение многомерного компьютерного моделирования.
- 2. Какие основные этапы включает процесс моделирования многомерных систем?
- 3. В чем отличие математического и имитационного моделирования?
- 4. Назовите основные типы моделей, используемых в геологических исследованиях.
- 5. Что такое нормализация данных и для чего она применяется?
- 6. Перечислите основные методы нормализации и стандартизации данных.
- 7. Как выявляются и устраняются выбросы в исходных данных?
- 8. Какие задачи решает корреляционный анализ?
- 9. Как строится и интерпретируется корреляционная матрица?
- 10. В чем суть множественной линейной регрессии?
- 11. Как интерпретировать коэффициенты регрессионной модели?
- 12. Что такое мультиколлинеарность и как она влияет на анализ?
- 13. Опишите этапы кластерного анализа.
- 14. Какие методы кластеризации вы знаете? В чем их отличия?
- 15. Как выбрать оптимальное число кластеров?
- 16. Для чего применяется метод главных компонент (РСА)?
- 17. Как определить количество значимых главных компонент?

- 18. Как интерпретируются собственные значения и векторы в РСА?
- 19. Какие задачи решает геостатистический анализ?
- 20. Объясните понятие вариограммы и ее роль в пространственном моделировании.
- 21. Какие существуют типы вариограмм?
- 22. В чем особенности пространственного моделирования геологических параметров?
- 23. Для чего используется программное обеспечение Micromine?
- 24. Какие типы цифровых моделей можно построить в ГИС?
- 25. Как осуществляется визуализация многомерных данных?
- 26. Какие методы анализа используются для интерпретации результатов моделирования?
- 27. Как оценить качество построенной модели?
- 28. В чем преимущества и ограничения многомерного моделирования в геологии?
- 29. Как интегрировать данные из разных источников для многомерного анализа?
- 30. Перечислите основные этапы подготовки данных для моделирования.
- 31. Как оформлять отчет по лабораторной работе?
- 32. Какие требования предъявляются к оформлению иллюстраций и графиков?
- 33. Как формируется список литературы в отчете?
- 34. Какие программные средства используются для многомерного анализа и моделирования?
- 35. Как проводить анализ чувствительности модели?
- 36. В чем заключается отличие одномерного и многомерного анализа данных?
- 37. Каковы основные ошибки при выполнении многомерного моделирования?
- 38. Каковы этапы комплексного многомерного моделирования геологотехнологической задачи?
- 39. Какие современные тенденции развития компьютерного моделирования в геологии вы знаете?
- 40. Приведите пример практического применения многомерного моделирования в геологоразведке.

6.2.2.1.2 Критерии оценивания

Зачтено	Не зачтено
выставляется студенту, твердо знающему	выставляется студенту, который не знает
программный материал, грамотно и по	значительной части программного
существу его излагающему, который не	материала, допускает существенные
допускает существенных неточностей в	ошибки, не может ответить на
ответе на вопросы, правильно применяет	дополнительные вопросы
теоретические положения при решении	
практических задач;	

7 Основная учебная литература

- 1. Боев В. Д. Компьютерное моделирование систем [Электронный ресурс] : учебное пособие для среднего профессионального образования / В. Д. Боев, 2024. 253.
- 2. Федоров С. Е. Компьютерное моделирование и исследование систем автоматического управления : учебно-методическое пособие / С. Е. Федоров, 2022. 94.

8 Дополнительная учебная литература и справочная

- 1. Тарасевич Юрий Юрьевич. Математическое и компьютерное моделирование. Вводный курс: учеб. пособие для естеств.-мат. специальностей / Ю. Ю. Тарасевич, 2002. 140.
- 2. Сосновиков Γ . К. Компьютерное моделирование. Практикум по имитационному моделированию в среде GPSS World [Электронный ресурс] : учебное пособие / Γ . К. Сосновиков, Л. А. Воробейчиков, 2022. 111.
- 3. Компьютерное моделирование: учебник / В.М. Градов, Г.В. Овечкин, П.В. Овечкин, И.В. Рудаков. Москва: КУРС: ИНФРА-М, 2018. 264 с. ISBN 978-5-16-105145-0.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/

11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем

- 1. Лицензионное программное обеспечение Системное программное обеспечение
- 2. Лицензионное программное обеспечение Пакет прикладных офисных программ
- 3. Лицензионное программное обеспечение Интернет-браузер

12 Материально-техническое обеспечение дисциплины

- 1. Учебная аудитория для проведения лекционных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оснащение: комплект учебной мебели, рабочее место преподавателя, доска. Мультимедийное оборудование (в том числе переносное): мультимедийный проектор, экран, акустическая система, компьютер с выходом в интернет.
- 2. Учебная аудитория для проведения лабораторных/практических (семинарских) занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оснащение: комплект учебной мебели, рабочее место преподавателя, доска. Мультимедийное оборудование (в том числе переносное): мультимедийный проектор, экран, акустическая система, компьютер с выходом в интернет.
- 3. Компьютерный класс