Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Структурное подразделение «Сибирская школа геонаук»

УТВЕРЖДЕНА:

на заседании ДОТ Протокол №29 от 10 апреля 2025 г.

Рабочая программа дисциплины

«МОДЕЛИРОВАНИЕ СИСТЕМ И ПРОЦЕССОВ»					
C					
Специальность: 21.05.03 Технология геологической разведки					
Геофизические информационные системы					
Квалификация: Горный инженер-геофизик					
Форма обучения: очная					

Документ подписан простой электронной подписью Составитель программы: Ланько Анна Викторовна Дата подписания: 29.06.2025

Документ подписан простой электронной подписью Утвердил: Ланько Анна Викторовна

Дата подписания: 29.06.2025

Документ подписан простой электронной подписью Согласовал: Паршин Александр Вадимович Дата подписания: 14.07.2025

1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

1.1 Дисциплина «Моделирование систем и процессов» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ПК-2 Способен проводить разработку программно-	
информационных методик анализа, синтеза,	
оптимизации и прогнозирования процессов	ПК-2.4
функционирования объектов профессиональной	11K-2.4
деятельности в различных областях и сферах,	
связанных с недропользованием	
ПК-4 Способен внедрять программно-	
информационное обеспечение технологических	
процессов геофизических работ, обработки	
полученных данных и корректировать эти процессы в	ПК-4.1
зависимости от поставленных геологических и	
технологических задач; Оценивать риски внедрения	
научно-технических достижений и передового опыта	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ПК-2.4	Способен проводить анализ,	Знать Основные понятия,
	синтез, оптимизацию и	принципы и этапы моделирования
	прогнозирование процессов	систем и процессов в геологии и
	функционирования объектов	геофизике, включая структурно-
	профессиональной деятельности	формационную интерпретацию и
	на основе моделирования	методы построения моделей
	систем и процессов	геологических объектов и
		процессов.
		Классификацию методов
		моделирования (математическое,
		компьютерное, имитационное
		моделирование), их возможности и
		ограничения применительно к
		задачам геологоразведки и
		геофизических информационных
		систем.
		Современные программные
		средства и пакеты прикладных
		программ для моделирования
		геологических и геофизических
		процессов
		Уметь Выбирать и применять
		адекватные методы и инструменты
		моделирования для решения задач
		геологоразведки и интерпретации
		геофизических данных.

		Выполнять анализ эффективности и достоверности построенных моделей, интерпретировать полученные результаты. Оценивать качество моделей. Владеть Навыками построения, анализа и оптимизации моделей геологических и геофизических процессов с использованием современных программных средств и технологий моделирования. Приёмами работы с пакетами прикладных программ для моделирования и интерпретации геологических и геофизических данных
ПК-4.1	Демонстрирует знания теоретических основ внедрения программно-информационного обеспечения при моделировании систем и процессов	Знать Теоретические основы программно-информационного обеспечения (ПИО) при моделировании систем и процессов, включая принципы интеграции, обработки и визуализации геологических и геофизических данных. Роль программного обеспечения в повышении точности, скорости и эффективности моделирования и принятия решений в геофизических информационных системах Уметь Выбирать и обосновывать применение конкретных программных продуктов и информационных технологий для моделирования геологических и геофизических процессов с учетом специфики задач и данных Владеть Практическими навыками работы с современными программными комплексами для геологического и геофизического моделирования. Навыками самостоятельного освоения и адаптации новых программных средств и технологий в области моделирования систем и процессов геологоразведки

2 Место дисциплины в структуре ООП

Изучение дисциплины «Моделирование систем и процессов» базируется на результатах освоения следующих дисциплин/практик: «Теоретические основы регистрации и обработки геолого-геофизических данных», «Геостатистика»

Дисциплина является предшествующей для дисциплин/практик: «Автоматизированные системы сбора и обработки данных геофизических исследований», «Оптимизация в геологоразведочном производстве», «Цифровая обработка сигналов», «Интеллектуальные информационные системы», «Проектирование информационных систем в геонауках»

3 Объем дисциплины

Объем дисциплины составляет – 2 ЗЕТ

Вид учебной работы	Трудоемкость в академич (Один академический час со минутам астрономическ	ответствует 45
	Bcero	Семестр № 6
Общая трудоемкость дисциплины	72	72
Аудиторные занятия, в том числе:	48	48
лекции	16	16
лабораторные работы	0	0
практические/семинарские занятия	32	32
Самостоятельная работа (в т.ч. курсовое проектирование)	24	24
Трудоемкость промежуточной аттестации	0	0
Вид промежуточной аттестации (итогового контроля по дисциплине)	Зачет	Зачет

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр № 6

	Наименование	Виды контактной работы				ктной работы СРС			Виды контактной работы		Виды контактной работы		Виды контактной работы		DC	Форма
No	No		Лекции ЛР		ПЗ(СЕМ)		CPC		Форма							
п/п раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	текущего контроля							
1	2	3	4	5	6	7	8	9	10	11						
1	1. Введение в моделирование систем и процессов	1	2							Устный опрос						
2	2.Теоретические основы построения моделей геологических объектов	2	2			1	8	1, 3	4	Устный опрос						
3	3.Методы математического моделирования в геологоразведке	3	2			2	6	1, 3	4	Устный опрос						
4	4.Имитационное моделирование геофизических процессов	4	2			3	6	1, 3	4	Устный опрос						

5	5.Программно- информационное обеспечение моделирования	5	2		4	4	3	2	Устный опрос
6	6. Анализ, синтез и оптимизация моделей	6	2		5	4	1, 3	3	Устный опрос
7	7.Прогнозировани е и интерпретация результатов моделирования	7	2		6	4	2	3	Устный опрос
8	8.Практические аспекты внедрения моделирования в геофизические информационные системы	8	2				4	4	Устный опрос
	Промежуточная аттестация								Зачет
	Всего		16			32		24	

4.2 Краткое содержание разделов и тем занятий

Семестр № 6

No	Тема	Краткое содержание			
1	1. Введение в	Понятие и виды моделей. Роль моделирования в			
	моделирование систем	геологоразведке. Этапы моделирования.			
	и процессов	Классификация моделей (физические,			
		математические, компьютерные). Примеры			
		применения моделирования в геофизике.			
2	2.Теоретические	Основы теории систем. Элементы и структура			
	основы построения	геологических систем. Принципы абстрагирования			
	моделей геологических	и идеализации. Формализация геологических			
	объектов	процессов. Построение концептуальных и			
		математических моделей.			
3	3.Методы	Математические методы описания геологических			
	математического	процессов. Дифференциальные уравнения,			
	моделирования в	вероятностные и статистические методы. Основы			
	геологоразведке	геостатистики. Примеры математических моделей			
		в геофизике.			
4	4.Имитационное	Понятие имитационного моделирования.			
	моделирование	Построение имитационных моделей для			
	геофизических	геофизических задач. Использование			
	процессов	специализированного ПО. Верификация и			
		валидация моделей.			
5	5.Программно-	Обзор современных программных комплексов для			
	информационное	моделирования. Архитектура и функциональные			
	обеспечение	возможности ПО. Интеграция данных, обмен			
	моделирования	форматами, автоматизация обработки.			
6	6. Анализ, синтез и	Методы анализа и оценки моделей. Синтез			
	оптимизация моделей	моделей для комплексных объектов. Оптимизация			
		параметров моделей. Критерии качества и			
		достоверности. Корректировка и адаптация			

		моделей.
7	7.Прогнозирование и	Методы прогнозирования на основе моделей.
	интерпретация	Интерпретация результатов моделирования для
	результатов	принятия решений. Примеры использования
	моделирования	моделей для оценки запасов, рисков, планирования
		работ.
8	8.Практические	Особенности внедрения программно-
	аспекты внедрения	информационного обеспечения. Организация
	моделирования в	работы с данными и моделями. Примеры
	геофизические	успешных внедрений в геологоразведке.
	информационные	Тенденции и перспективы развития.
	системы	

4.3 Перечень лабораторных работ

Лабораторных работ не предусмотрено

4.4 Перечень практических занятий

Семестр № 6

Nº	Темы практических (семинарских) занятий	Кол-во академических часов
1	Построение концептуальной модели геологического объекта	8
2	Математическое описание процессов в геологических системах	6
3	Численные методы решения геологических задач	6
4	Использование программно-информационного обеспечения для моделирования	4
5	Анализ и оптимизация параметров модели	4
6	Прогнозирование и интерпретация результатов моделирования	4

4.5 Самостоятельная работа

Семестр № 6

Nº	Вид СРС	Кол-во академических часов
1	Оформление отчетов по лабораторным и практическим работам	8
2	Подготовка к зачёту	3
3	Подготовка к практическим занятиям	9
4	Проработка разделов теоретического материала	4

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: Дискуссия

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по практическим занятиям

Выполнение практических работ организовывайте согласно предложенным методическим рекомендациям.

1. Построение концептуальной модели геологического объекта

Цель: Научиться формировать концептуальную модель геологического объекта на основе исходных геологических и геофизических данных.

Ход выполнения:

Анализ исходных данных (карты, разрезы, результаты скважин).

Определение структуры объекта, выделение основных элементов.

Составление схемы концептуальной модели.

Обоснование выбранной структуры.

Контрольные вопросы:

Какие основные элементы включает концептуальная модель?

Каковы критерии выделения структурных блоков?

Для самостоятельной подготовки: Изучить примеры концептуальных моделей, подготовить краткий обзор по выбранному объекту.

Оформление отчета: Введение, описание исходных данных, схема модели, обоснование структуры, выводы, список литературы.

2. Математическое описание процессов в геологических системах

Цель: Освоить методы математического описания геологических и геофизических процессов.

Ход выполнения:

Выбор процесса для моделирования (например, фильтрация, теплоперенос).

Формулировка уравнений (дифференциальных, алгебраических).

Определение начальных и граничных условий.

Краткий анализ применимости выбранной модели.

Контрольные вопросы:

Какие уравнения описывают выбранный процесс?

Как выбрать начальные и граничные условия?

Для самостоятельной подготовки: Повторить основы математического моделирования, подготовить примеры аналогичных задач.

Оформление отчета: Постановка задачи, вывод уравнений, описание условий, анализ применимости, выводы.

3. Численные методы решения геологических задач

Цель: Научиться применять численные методы для решения геологических задач. Ход выполнения:

Выбор численного метода (метод Гаусса, Рунге-Кутты, сплайн-интерполяция и др.).

Реализация алгоритма на ПК (например, в Excel, Python, специализированном ПО).

Решение задачи на примере реальных данных.

Анализ точности и устойчивости решения.

Контрольные вопросы:

Как выбрать подходящий численный метод?

Какие параметры влияют на точность решения?

Для самостоятельной подготовки: Изучить теорию выбранного метода, подготовить шаблон программы.

Оформление отчета: Описание задачи, алгоритм, исходные данные, результаты расчетов, анализ ошибок, выводы.

4. Использование программно-информационного обеспечения для моделирования

Цель: Освоить работу с современным программным обеспечением для моделирования геологических процессов.

Ход выполнения:

Ознакомление с интерфейсом выбранного ПО (Micromine, Leapfrog Geo, др.).

Загрузка исходных данных, построение модели.

Визуализация результатов, экспорт отчетов.

Краткий анализ преимуществ и ограничений ПО.

Контрольные вопросы:

Какие функции реализует выбранное ПО?

Каковы основные этапы построения модели в программе?

Для самостоятельной подготовки: Просмотреть обучающие материалы по ПО, подготовить вопросы для обсуждения.

Оформление отчета: Описание ПО, ход работы, скриншоты результатов, анализ, выводы.

5. Анализ и оптимизация параметров модели

Цель: Научиться анализировать чувствительность и оптимизировать параметры геологической модели.

Ход выполнения:

Выбор ключевых параметров модели.

Проведение серии расчетов с изменением параметров.

Анализ влияния параметров на результаты моделирования.

Оптимизация параметров для повышения достоверности модели.

Контрольные вопросы:

Какие параметры наиболее влияют на результат?

Как проводится оптимизация модели?

Для самостоятельной подготовки: Изучить методы оптимизации, подготовить примеры анализа чувствительности.

Оформление отчета: Описание параметров, результаты расчетов, графики, выводы по оптимизации.

6. Прогнозирование и интерпретация результатов моделирования

Цель: Освоить методы прогнозирования и интерпретации результатов моделирования для принятия решений.

Ход выполнения:

Проведение моделирования на основе построенной модели.

Прогнозирование развития процесса/объекта (например, распространение аномалии, изменение запасов).

Интерпретация полученных результатов, формулировка выводов для практического применения.

Оценка достоверности прогноза.

Контрольные вопросы:

Как интерпретировать результаты моделирования?

Какие методы используются для оценки достоверности прогноза?

Для самостоятельной подготовки: Ознакомиться с примерами интерпретации, подготовить анализ одного из случаев.

Оформление отчета: Описание задачи, ход моделирования, прогнозные результаты, интерпретация, выводы.

Общие методические указания по выполнению и оформлению практических работ

Цель работы: Кратко формулируется задача, которую предстоит решить.

Ход выполнения: Подробно описываются этапы работы, используемые методы, программные средства.

Контрольные вопросы: Используются для самопроверки и подготовки к защите работы. Требования к отчету:

Структурированное оформление (введение, описание исходных данных, постановка задачи, ход работы, результаты, анализ, выводы, список литературы).

Графическое и табличное представление результатов.

Соблюдение стандартов оформления (например, ГОСТ Р 7.0.5-2008).

Рекомендации для самостоятельной подготовки: Изучить теоретический материал, повторить используемые методы, ознакомиться с примерами оформления отчетов

5.1.2 Методические указания для обучающихся по самостоятельной работе:

Рекомендации по самостоятельной подготовке к практическим работам:

1. Цели самостоятельной работы

Освоить теоретические основы моделирования систем и процессов, применительно к задачам геологической разведки.

Изучить основные понятия, методы и этапы построения моделей.

Подготовиться к практическим занятиям, контрольным и итоговым работам.

2. Содержание самостоятельной работы

2.1. Проработка лекционного материала

Изучите ключевые понятия теории моделирования сложных систем: определение модели, функции моделей, классификация моделей, требования к моделям.

Ознакомьтесь с этапами моделирования: постановка задачи, определение типа модели, построение и анализ модели, интерпретация результатов.

Разберитесь в особенностях моделирования случайных воздействий и применении статистических методов в моделировании.

2.2. Изучение отдельных разделов курса

Изучите рекомендованную литературу по отдельным темам курса (см. список литературы).

Выполните конспектирование основных определений, алгоритмов, этапов построения моделей.

Практикуйтесь в самостоятельном решении типовых задач, связанных с анализом, синтезом и прогнозированием процессов функционирования геологических объектов. Анализируйте примеры из практики моделирования в геологической разведке.

2.3. Подготовка к практическим занятиям

Ознакомьтесь с методическими указаниями, заданиями и требованиями к практическим работам.

Подготовьте исходные данные, необходимые для выполнения заданий (таблицы, схемы, описания процессов).

Повторите основные методы математического, имитационного и статистического моделирования, используемые в курсе.

Разделите выполнение работы на этапы: подготовка данных, выполнение расчетов, оформление результатов, написание отчета.

3. Рекомендации по оформлению отчетов по практическим работам Структура отчета:

Титульный лист (название работы, ФИО, группа, дата)

Цель работы

Краткое описание исходных данных

Описание используемых методов

Последовательное изложение этапов выполнения работы с иллюстрациями (схемы, таблицы, графики)

Анализ полученных результатов (выявленные особенности, сравнение с теорией, интерпретация)

Выводы и рекомендации

Список использованных источников

Требования к иллюстрациям:

Все схемы, графики и таблицы должны быть четкими, снабжены подписями и пояснениями.

Формулировка выводов:

Кратко и ясно отражайте основные результаты работы, выявленные закономерности, достоинства и ограничения применённых методов.

Соблюдение стандартов оформления:

Оформляйте отчет в соответствии с требованиями кафедры или учебного заведения (шрифт, поля, структура, ссылки).

4. Рекомендации по самостоятельной проработке тем

Используйте учебники, статьи, электронные ресурсы, указанные в рабочей программе дисциплины.

Конспектируйте основные определения, этапы построения моделей, методы анализа и синтеза.

Выполняйте самостоятельные задания по моделированию процессов, анализу и прогнозированию функционирования геологических объектов.

Формулируйте вопросы для обсуждения на практических занятиях.

Анализируйте реальные примеры применения моделирования в геологоразведке, делайте выводы о целесообразности использования различных методов.

5. Общие рекомендации

Развивайте навыки поиска и критического анализа информации, используйте современные источники и литературу.

Связывайте теоретические знания с практическими задачами курса, анализируйте, как выбранные методы моделирования влияют на качество и достоверность результатов. Соблюдайте академическую честность: все результаты должны быть получены самостоятельно, с обязательным указанием источников заимствованных данных и иллюстраций

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 семестр 6 | Устный опрос

Описание процедуры.

Опрос может проводиться:

Фронтально — в форме беседы с группой, когда вопросы задаются всей группе, а ответы даются по очереди или по желанию.

Индивидуально — каждый студент отвечает на один или несколько вопросов, давая развернутый, связный ответ, часто с примерами и пояснениями.

Комбинированно — сочетаются оба подхода, а также используются дополнительные методы (например, письменные карточки, рецензирование ответов товарищей)

Критерии оценивания.

Критерии оценивания полнота и правильность ответа; понимание и осознанность материала; логичность и последовательность изложения; корректность терминологии; способность отвечать на уточняющие вопросы

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
ПК-2.4	Способен проводить анализ, синтез,	Устное
	оптимизацию и прогнозирование	собеседование по
	процессов функционирования	теоретическим
	объектов профессиональной	вопросам
	деятельности на основе	
	моделирования систем и процессов	
ПК-4.1	Демонстрирует знания теоретических	Устное
	основ внедрения программно-	собеседование по
	информационного обеспечения при	теоретическим
	моделировании систем и процессов	вопросам

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 6, Типовые оценочные средства для проведения зачета по дисциплине

6.2.2.1.1 Описание процедуры

Зачет сдается в период экзаменационной сессии, предусмотренной учебным планом и календарным учебным графиком.

Студенты допускаются к сдаче зачета по дисциплине при выполнении всех запланированных форм текущего контроля согласно рабочей программе дисциплины. На зачет студент должен явиться с зачетной книжкой. Зачет проводится в устной форме. Примерные вопросы для устного опроса:

Дайте определение понятия «модель» в контексте геологических систем.

Какие существуют основные виды моделей? Приведите примеры.

В чем заключается цель моделирования геологических процессов?

Перечислите этапы моделирования систем и процессов.

Что такое концептуальная модель? Как она строится?

Каковы основные требования к построению модели?

В чем различие между физическими и математическими моделями?

Какие задачи решаются с помощью моделирования в геологоразведке?

Что такое имитационное моделирование?

Приведите примеры использования статистических методов в моделировании геологических процессов.

Какие существуют методы верификации и валидации моделей?

Объясните понятие «структура геологической системы».

Как формулируется задача моделирования?

Что такое параметры модели? Как они определяются?

Какие существуют методы анализа моделей?

Как проводится оптимизация параметров модели?

В чем состоит отличие анализа и синтеза моделей?

Что понимается под прогнозированием в контексте моделирования?

Какие существуют критерии достоверности модели?

Как осуществляется интерпретация результатов моделирования?

Что такое граничные и начальные условия в моделировании процессов?

Перечислите основные источники ошибок при построении моделей.

В чем заключается роль моделирования при оценке запасов полезных ископаемых?

Как моделирование помогает в планировании геологоразведочных работ?

Какие существуют методы сбора и подготовки исходных данных для моделирования?

Каковы особенности моделирования случайных воздействий на геологические системы?

Что такое калибровка модели? Для чего она проводится?

Объясните понятие «масштабирование» в моделировании.

В чем заключается отличие дискретных и непрерывных моделей?

Какие методы используются для визуализации результатов моделирования?

Как определяется область применимости модели?

Какие существуют ограничения у моделей геологических процессов?

Как моделирование способствует принятию решений в профессиональной деятельности геолога?

В чем заключается интеграция различных типов данных в модели?

Каковы основные этапы анализа чувствительности модели?

Объясните понятие «верификация модели».

Какие задачи решаются с помощью синтеза моделей?

Как моделирование используется для оценки рисков в геологоразведке?

В чем заключается роль обратной связи при построении и использовании моделей?

Какие перспективы развития методов моделирования в геологической разведке вы видите?

6.2.2.1.2 Критерии оценивания

Зачтено	Не зачтено
выставляется студенту, твердо знающему	выставляется студенту, который не знает
программный материал, грамотно и по	значительной части программного
существу его излагающему, который не	материала, допускает существенные
допускает существенных неточностей в	ошибки, не может ответить на
ответе на вопросы, правильно применяет	дополнительные вопросы
теоретические положения при решении	
практических задач;	

7 Основная учебная литература

- 1. Кудрявцев А. А. Моделирование систем и процессов : учебное пособие / А. А. Кудрявцев, С. В. Молокова, 2022. 96.
- 2. Кулагин А. В., Мушин И. А., Павлова Т. Ю. Моделирование геологических процессов при интерпретации геофизических данных 1994. 250 с. ISBN 5-247-02645-4

8 Дополнительная учебная литература и справочная

- 1. Николаев С. В. Моделирование систем и процессов : учебник / С. В. Николаев, 2023. 224.
- 2. Моделирование систем и процессов: учебник для академического бакалавриата / В. Н. Волкова, Г. В. Горелова, В. Н. Козлов [и др.]; под ред. В. Н. Волковой, В. Н. Козлова. М.: Издательство Юрайт, 2014. 592 с. Серия: Бакалавр. Академический курс. ISBN 978-5-9916-3742-8
- 3. В. А. Белкина, С. Р. Бембель, А. А. Забоева, Н. В. Санькова. Основы геологического моделирования (часть 1): учебное пособие. Тюмень: Тюм Γ Н Γ У, 2015. 168 с.
- 4. Моделирование геолого-геофизических параметров. Двухмерное моделирование : учебник / В. М. Александров, В. А. Белкина, Н. В. Санькова, В. В. Мазуркевич. Вологда : Инфра-Инженерия, 2023. 236 с. ISBN 978-5-9729-1376-3. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/346739 Режим доступа: для авториз. пользователей.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/

11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем

- 1. Лицензионное программное обеспечение Системное программное обеспечение
- 2. Лицензионное программное обеспечение Пакет прикладных офисных программ
- 3. Лицензионное программное обеспечение Интернет-браузер

12 Материально-техническое обеспечение дисциплины

- 1. Учебная аудитория для проведения лекционных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оснащение: комплект учебной мебели, рабочее место преподавателя, доска. Мультимедийное оборудование (в том числе переносное): мультимедийный проектор, экран, акустическая система, компьютер с выходом в интернет.
- 2. Учебная аудитория для проведения лабораторных/практических (семинарских) занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оснащение: комплект учебной мебели, рабочее место преподавателя, доска. Мультимедийное оборудование (в том числе переносное): мультимедийный проектор, экран, акустическая система, компьютер с выходом в интернет.
- 3. Компьютерный класс