Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ **УНИВЕРСИТЕТ»**

Структурное подразделение «Архитектуры и градостроительства»

УТВЕРЖДЕНА:

на заседании кафедры Протокол №<u>10</u> от <u>02 июня 2025</u> г.

Рабочая программа дисциплины

«ТЕРРИТОРИАЛЬНЫЕ ИНФОРМАЦИОННЫЕ СИСТЕМЫ»
Направление: 07.03.04 Градостроительство
Градостроительное проектирование
Квалификация: Бакалавр
Форма обучения: очная

Документ подписан простой электронной подписью Составитель программы: Вантеева Юлия Владимировна

Дата подписания: 30.05.2025

Документ подписан простой электронной подписью Утвердил: Пуляевская Евгения Владимировна

Дата подписания: 03.06.2025

Документ подписан простой электронной подписью Согласовал: Бобрышев Дмитрий Валерьевич

Дата подписания: 02.06.2025

- 1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы
- 1.1 Дисциплина «Территориальные информационные системы» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ПКР-2 Способность участвовать в проведении	
предпроектных исследований и подготовке данных	
для разработки градостроительной проектной	ПКР-2.11, ПКР-2.19, ПКР-2.21
документации применительно ко всем уровнями	
территориальных градостроительных объектов	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ПКР-2.11	Участвует в подготовке ГИС данных для разработки градостроительной проектной документации в области планировки территории	Знать основы сбора и систематизации пространственных данных для разработки проектов планировки. Уметь анализировать пространственные данные в рамках проектов планировки территории инструментами ГИС. Владеть методами отображения пространственных данных на картах и схемах, необходимых для обоснования проекта планировки.
ПКР-2.19	Участвует в подготовке ГИС данных для разработки градостроительной проектной документации в области градостроительного зонирования	Знать основы сбора и систематизации пространственных данных для разработки правил землепользования и застройки. Уметь анализировать пространственные данные инструментами ГИС при разработке правил землепользования и застройки. Владеть методами отображения пространственных данных на картах и схемах градостроительного зонирования
ПКР-2.21	Участвует в подготовке ГИС данных для разработки градостроительной проектной документации в области территориального планирования	Знать основы сбора и систематизации пространственных данных для разработки схем территориального планирования Уметь анализировать пространственные данные в рамках территориального планирования инструментами гис. Владеть методами отображения

	пространственных данных на картах
	и схемах территориального
	планирования

2 Место дисциплины в структуре ООП

Изучение дисциплины «Территориальные информационные системы» базируется на результатах освоения следующих дисциплин/практик: «Геодезия и картография», «Информационные технологии», «Градостроительный анализ»

Дисциплина является предшествующей для дисциплин/практик: «Территориальное планирование», «Ландшафтное планирование», «Основы градостроительного зонирования», «Градостроительное проектирование (2 уровень)», «Проектная деятельность», «Производственная практика: преддипломная практика»

3 Объем дисциплины

Объем дисциплины составляет – 8 ЗЕТ

	1 5		академических часах ас соответствует 45 мину	утам				
D	астрономического часа)							
Вид учебной работы	Всего	Сем естр № 7	Семестр № 8	Семес тр № 9				
Общая трудоемкость дисциплины	288	72	108	108				
Аудиторные занятия, в том числе:	96	32	32	32				
лекции	0	0	0	0				
лабораторные работы	96	32	32	32				
практические/семинарские занятия	0	0	0	0				
Контактная работа, в том числе	0	0	0	0				
в форме работы в электронной информационной образовательной среде	0	0	0	0				
Самостоятельная работа (в т.ч. курсовое проектирование)	156	40	76	40				
Трудоемкость промежуточной аттестации	36	0	0	36				
Вид промежуточной аттестации (итогового контроля по дисциплине)	Экзамен, Зачет	Заче	Зачет	Экзам ен				

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр № 7

	Наименование	Виды контактной работы						CDC		Ф
N_{2}		Лекции		ЛР		ПЗ(СЕМ)		CPC		Форма
п/п	раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	No	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Теория и практика территориальных информационных систем	1						3, 4	9	Устный опрос
2	Системы координат и картографические проекции	2						3, 4	7	Устный опрос
3	Геоинформацион ные системы	3		1, 2	8			1, 2, 4	14	Отчет по лаборатор ной работе
4	Геоинформацион ный анализ пространственны х данных	4		3, 4, 5, 6	24			2, 4	10	Отчет по лаборатор ной работе
	Промежуточная аттестация									Зачет
	Всего				32				40	

Семестр **№** <u>8</u>

	Наименование		Видь	і контан	ктной ра	боты		C	DC	Форма
No	разлела и темы	Лекции		ЛР		ПЗ(СЕМ)		CPC		_
п/п		Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	N₂	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	ГИС: создание и редактирование пространственны х данных	1		1	4			2, 6	4	Отчет по лаборатор ной работе
2	Дистанционное зондирование Земли	2						1, 3, 4, 6	44	Устный опрос
3	Цифровое моделирование рельефа	3		2, 3, 4	28			2, 3, 5, 6	28	Отчет по лаборатор ной работе
	Промежуточная аттестация									Зачет
	Всего			-	32				76	

Семестр **№** <u>9</u>

	№ Наименование	Виды контактной работы							DC	Форма
No		Лекции		ЛР		ПЗ(СЕМ)		CPC		Форма
п/п	раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	No	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Д33: мультиспектральн ая космическая съемка	1		1	4			1, 2, 3	10	Отчет по лаборатор ной работе
2	Дешифрирование	2		2	12			1, 2,	18	Отчет по

	и классификация космических снимков. Геоинформацион ное картографирован					3		лаборатор ной работе
	ие							
3	Геоинформацион ный анализ пространственны х данных	3	3	16		1, 2	12	Отчет по лаборатор ной работе
	Промежуточная аттестация						36	Экзамен
	Всего			32			76	

4.2 Краткое содержание разделов и тем занятий

No	Тема	Краткое содержание
1	Теория и практика	Информация: базовые понятия. Системный
	территориальных	подход. Информационные системы и их
	информационных	классификации. Территориальные
	систем	информационные системы (ТИС): функции,
		свойства, основные технологические элементы и
		блоки. Уровни ТИС по охвату территории.
		Области использования ТИС и примеры их
		реализации.
2	Системы координат и	Географическая система координат. Форма и
	картографические	размеры Земли (эллипсоид вращения, референц-
	проекции	эллипсоид). Понятие "датум": геоцентрический и
		местный (локальный). Картографическая
		проекция: определение, классификации и виды
		проекций, факторы, влияющие на выбор проекций.
		Картографическая проекция топографических карт
		России масштабов 1:25000-1:1000000, ее основной
	ļ.,	принцип.
3	Геоинформационные	Географическая пространственная информация,
	системы	основные типы источников пространственных
		данных. Географические информационные
		системы (ГИС): основные понятия, структура,
		функции и типы ГИС. История развития ГИС-
		технологий. Геоинформатика, связь ГИС с
		другими научными дисциплинами и науками.
		Области использования ГИС-технологий. ГИС в градостроительстве. Основные отличия ГИС от
		ТИС и САПР. Бесплатное и коммерческое
		программное обеспечение ГИС (ArcGIS, MapInfo,
		гис Панорама, GRASS GIS, QGIS И др.).
		Пространственная база данных (БД): основные
		элементы, способы представления
		пространственных данных в цифровой форме.
		Преимущества и недостатки применения
		векторного и растрового способов представления
		векторного и растрового спосооов представления

	_	
		пространственных объектов в БД. Web-ресурсы и
		источники пространственных данных для работы в
		ГИС.
4	Геоинформационный	Понятие геоинформационного анализа.
	анализ	Знакомство с основными видами ГИС-анализа:
	пространственных	функции работы с базами пространственных и
	данных	атрибутивных данных, картометрические
		функции, оверлейные операции. Географическая
		привязка растров, основные типы преобразования
		(трансформации) изображения для привязки.
		Специализированный анализ: элементы
		градостроительной статистики и функциональное
		зонирование территории инструментами ГИС.
		Использование стилей оформления для
		визуализации данных и компоновка карт в ГИС.

No	Тема	Краткое содержание
1	ГИС: создание и	Способы хранения и преобразования векторных
	редактирование	данных, создание нового векторного слоя,
	пространственных	редактирование существующего слоя, порог
	данных	прилипания, инструменты оцифровки растров.
		Представление о топологии, топологическое
		редактирование. Оформление и компоновка карт.
2	Дистанционное	Глобальные системы позиционирования: GPS и
	зондирование Земли	ГЛОНАСС. Дистанционное зондирование Земли
		(ДЗЗ): основные понятия, методы. История
		развития методов ДЗЗ. Физические основы и
		природные условия получения снимков,
		спектральная отражательная способность
		природных объектов. Основные диапазоны
		регистрации электромагнитного излучения. Общая
		классификация сенсоров и платформ. Влияние
		атмосферы и погодных условий на регистрируемое
		сенсорами электромагнитное излучение. Обзор
		зарубежных и отечественных спутниковых систем
		Д33. Возможные области применения данных Д33,
		преимущества и недостатки их использования.
3	Цифровое	Представление о цифровой модели рельефа
	моделирование рельефа	(ЦМР). Основные источники данных для создания
		ЦМР. Создание ЦМР: триангуляционная модель
		(TIN-модель) и сеточная модель (GRID)
		пространственных данных. Классификация ЦМР
		суши по пространственному разрешению.
		Примеры готовых глобальных и семиглобальных
		продуктов ЦМР. Семиглобальная ЦМР SRTM.
		Обработка ЦМР: предварительная обработка,
		светотеневая отмывка рельефа, генерация
		трехмерной модели рельефа, элементы
		гипсометрического, морфометрического и
		гидрологического анализа рельефа.

Специализированный ГИС-анализ:
картографирование форм рельефа и оценка
степени пригодности рельефа для строительства
инструментами ГИС.

Семестр **№** <u>9</u>

No	Тема	Краткое содержание
1	Д33:	Спутниковые изображения и их свойства.
	мультиспектральная	Основной принцип получения таких данных.
	космическая съемка	Спектральное, пространственное, временное и
		радиометрическое разрешение снимков. Уровни
		обработки спутниковых снимков. Представление о
		метаданных. Синтез цветного изображения
		космических снимков. Методы повышения
		пространственного разрешения снимков.
		Спутники семейства Landsat. Основные
		характеристики спутника Landsat 5, 8. Комбинации
		спектральных каналов Landsat 5 и 8 и их
		возможности.
2	Дешифрирование и	Дешифрирование космических снимков, виды
	классификация	дешифрирование, основные этапы. Визуальное
	космических снимков.	дешифрирование, преимущества и недостатки
	Геоинформационное	данного метода. Прямые, косвенные и
	картографирование	комплексные дешифровочные признаки.
		Автоматическая классификация космических
		снимков, основные методы. Спектральные и
		информационные классы. Классификация без
		обучения: основной принцип, преимущества и
		недостатки данного метода. Классификация с
		обучением: основной принцип, преимущества и
		недостатки данного метода. Понятие о
		геоинформационном картографировании.
		Цифровые, электронные и компьютерные карты и
		ГИС-технологии их создания.
3	Геоинформационный	Специализированный ГИС-анализ. Применение
	анализ	навыков обработки космических снимков,
	пространственных	дешифрирования и инструментов оцифровки для
	данных	создания картосхемы землепользования.
		Применение инструментов геоинформационного
		анализа: буферизации, оверлейных операций
		(пересечение, наложение, обрезка и др.),
		геокодирования и др. для правого зонирования
		территории, визуализация полученных
		результатов.

4.3 Перечень лабораторных работ

N₂	Наименование лабораторной работы	Кол-во академических
1,-	Transferrobumie viuoopuropiioni puoorbi	часов

1	Установка программы QGIS	2
2	Создание ГИС-проекта на субъект РФ (по выбору)	6
3	Административно-территориальное деление субъекта РФ (по выбору)	6
4	Создание дежурной карты для города (по выбору) и расчет показателей баланса территории	6
5	Привязка растровых данных	6
6	Функциональное зонирование территории (по выбору)	6

Семестр **№** <u>8</u>

Nº	Наименование лабораторной работы	Кол-во академических часов
1	Оцифровка растров на примере оценки роста садовых некоммерческих товариществ (СНТ) в Марковском городском поселении с 1985 по 2024 год	4
2	Предварительная обработка цифровой модели рельефа SRTM в SAGA GIS	8
3	Гидрологический и морфометрический анализ рельефа в SAGA	8
4	Картографирование форм рельефа и оценка пригодности рельефа для строительства с помощью ГИС-инструментов	12

Семестр **№** <u>9</u>

N₂	Наименование лабораторной работы	Кол-во академических часов
1	Знакомство со съемочной системой Landsat 8	4
2	Геоинформационное картографирование ландшафтного покрова г. Иркутска	12
3	Правовое экологическое зонирование Слюдянского района	16

4.4 Перечень практических занятий

Практических занятий не предусмотрено

4.5 Самостоятельная работа

N₂	Вид СРС	Кол-во академических часов
1	Выполнение письменных творческих работ (писем, докладов, сообщений, ЭССЕ)	8
2	Оформление отчетов по лабораторным и практическим работам	10

3	Подготовка к зачёту	10
4	Проработка разделов теоретического материала	12

Семестр № 8

No	Вид СРС	Кол-во академических часов
1	Выполнение письменных творческих работ (писем, докладов, сообщений, ЭССЕ)	16
2	Оформление отчетов по лабораторным и практическим работам	16
3	Подготовка к зачёту	14
4	Подготовка к контрольным работам	4
5	Подготовка к практическим занятиям (лабораторным работам)	2
6	Проработка разделов теоретического материала	24

Семестр № 9

N₂	Вид СРС	Кол-во академических
112	Drig of o	часов
1	Оформление отчетов по лабораторным и практическим работам	18
2	Подготовка к практическим занятиям (лабораторным работам)	8
3	Проработка разделов теоретического материала	14

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: кейс методы, интерактивные лекции, мастер-классы

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по лабораторным работам:

- 1. СТО "027-2015 СИСТЕМА МЕНЕДЖМЕНТА КАЧЕСТВА. Учебно-методическая деятельность. Общие требования к организации и проведению лабораторных работ." (https://www.istu.edu/local/modules/doc/download/41660).
- 2. Территориальные информационные системы: лабораторный практикум / С. В. Солодянкина, Ю. В. Вантеева; Иркут. нац. исслед. техн. ун-т. Иркутск: ИРНИТУ, 2019. 90 с.
- 3. Электронный курс "Территориальные информационные системы". Сайт "Электронное обучение ИРНИТУ". URL: https://el.istu.edu/course/view.php?id=4004.

5.1.2 Методические указания для обучающихся по самостоятельной работе:

В процессе самостоятельной работы как в рамках аудиторных занятий, так и в ходе внеаудиторной работы, обучающиеся осуществляют следующие виды деятельности:

- 1. Проработка отдельных разделов теоретического курса и подготовка к контрольным работам, которые включают изучение и конспектирование лекционного материала, учебной литературы, электронных источников информации.
- 2. Подготовка докладов по заданным темам на основе поиска и подбора материала из

учебной и справочной литературы, дополнительной источников информации (статей в научных журналах, электронных ресурсов и т.п.).

- 3. Подготовка к лабораторным работам, которая включает предварительное ознакомление с заданием и порядком выполнения лабораторной работы, представленной в практикуме, и скачивание необходимых для выполнения работы данных из указанных электронных ресурсов.
- 4. Оформление отчетов по лабораторным работам в электронном виде в соответствии с требованиями СТО 027-2015 и лабораторного практикума. Отчеты по каждой лабораторной работе сдаются на проверку в течении семестра в электронном варианте (в формате pdf, doc или docx).
- 5. Подготовка к зачёту / экзамену, которая включает ознакомление студентов с контрольно-измерительными материалами, самостоятельную проработку и повторение теоретического и практического материалов по предложенным вопросам.

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 семестр 7 | Устный опрос

Описание процедуры.

Устный ответ на один вопрос из списка по советующей теме.

Тема (раздел): Теория и практика территориальных информационных систем . Примерный список вопросов:

- 1. Что такое территориальные информационные системы (ТИС)?
- 2. Назовите главную функцию ТИС.
- 3. Какие уровни ТИС выделяю в зависимости от охвата территории?
- 4. Какие основные блоки и разделы реализуются в ТИС?
- 5. Решение каких задач необходимо предусмотреть при создании и внедрении ТИС?
- 6. Назовите главные технологические элементы для создания программнотехнологического сопровождения ТИС.
- 7. Какие существуют возможные области применения ТИС?
- 8. Перечислите примеры реализации ТИС в России.
- 9. Назовите основные отличия территориальных информационных систем от геоинформационных систем.
- 10. Какие наборы базовых операций ГИС используют в ТИС?

Тема (раздел): Системы координат и картографические проекции. Примерный список вопросов:

- 1. Что такое геоид?
- 2. Чем отличается эллипсоид вращения от референц-эллипсоида?
- 3. Что такое геоцентрический датум, приведите примеры.
- 4. Что такое местный (локальный) датум, приведите примеры?
- 5. Что такое картографическая проекция?
- 6. Какие факторы влияют на выбор картографической проекции?
- 7. Назовите виды искажений в картографических проекциях.
- 8. Как классифицируются картографические проекции по характеру искажений?
- 9. Как проекции подразделяются по виду нормальной картографической сетки или по виду вспомогательной поверхности?
- 10. Какая картографическая проекция использовалась для создания топографических карт

масштабов 1:25 000 – 1:1 000 000 в России?

11. Опишите основной принцип равноугольной поперечно-цилиндрической проекции Гаусса.

Тема (раздел): Дистанционное зондирование Земли. Примерный список вопросов:

- 1. Что такое дистанционное зондирование Земли (ДЗЗ)?
- 2. Какие существуют методы дистанционного зондирования?
- 3. Опишите общий принцип получения данных ДЗЗ.
- 4. Что такое глобальные системы позиционирования и каков их принцип работы?
- 5. Назовите основные диапазоны электромагнитного излучения, которые регистрируются при ДЗЗ.
- 6. Охарактеризуйте два основных типа сенсоров для регистрации электромагнитного излучения.
- 7. Как влияет атмосфера и погодные условия на регистрируемое сенсорами электромагнитное излучение?
- 8. Что такое спектральное разрешение снимка?
- 9. Что такое пространственное разрешение снимка?
- 10. Что такое временное разрешение снимка?
- 11. Что такое радиометрическое разрешение?
- 12. Приведите примеры отечественных и зарубежных съемочных систем для ДЗЗ.
- 13. Назовите возможные области применения данных ДЗЗ.
- 14. Назовите преимущества и недостатки использования данных ДЗЗ.

Критерии оценивания.

Оценка «отлично»: обучающийся дает максимально полные развернутые ответы на вопросы, демонстрирует всестороннее, систематическое и глубокое знание учебнопрограммного материала.

Оценка «хорошо»: обучающийся дает корректные ответы на вопросы, усвоил основную литературу, проявляет незначительные нарушения в установлении взаимосвязи между теоретическими понятиями.

Оценка «удовлетворительно»: студент обнаруживает знание основного учебного материала, но допускает погрешности в ответе.

Оценка «неудовлетворительно»: студент проявляет отрывочные знания, допускает принципиальные ошибки в ответах на вопросы; отсутствует интеграция знаний.

6.1.2 семестр 7 | Отчет по лабораторной работе

Описание процедуры.

Лабораторные работы выполняются каждым студентом индивидуально за компьютером с использованием специального открытого программного обеспечения. Процедура выполнения каждой лабораторной работы подробно описана в лабораторном практикуме: Территориальные информационные системы: лабораторный практикум / С. В. Солодянкина, Ю. В. Вантеева; Иркут. нац. исслед. техн. ун-т. — Иркутск: ИРНИТУ, 2019. — 90 с., а также на электронном курсе "Территориальные информационные системы" (сайт "Электронное обучение ИРНИТУ". URL: https://el.istu.edu/course/view.php? id=4004)

Критерии оценивания.

- 1. Лабораторная работа зачтена, если все пункты задания выполнены корректно, отчет содержит все необходимые составляющие, студент может объяснить/продемонстрировать, как выполнял работу, и может прокомментировать полученные результаты;
- 2. Лабораторная работа не зачтена, если:
- выполнены не все пункты задания;
- получен ошибочный результат и отчет составлен некорректно;
- отчет содержит материалы чужой работы;
- студент не может объяснить и продемонстрировать, как выполнял лабораторную работу.

6.1.3 семестр 8 | Устный опрос

Описание процедуры.

Устный ответ на один вопрос из списка по советующей теме.

Тема (раздел): Теория и практика территориальных информационных систем . Примерный список вопросов:

- 1. Что такое территориальные информационные системы (ТИС)?
- 2. Назовите главную функцию ТИС.
- 3. Какие уровни ТИС выделяю в зависимости от охвата территории?
- 4. Какие основные блоки и разделы реализуются в ТИС?
- 5. Решение каких задач необходимо предусмотреть при создании и внедрении ТИС?
- 6. Назовите главные технологические элементы для создания программнотехнологического сопровождения ТИС.
- 7. Какие существуют возможные области применения ТИС?
- 8. Перечислите примеры реализации ТИС в России.
- 9. Назовите основные отличия территориальных информационных систем от геоинформационных систем.
- 10. Какие наборы базовых операций ГИС используют в ТИС?

Тема (раздел): Системы координат и картографические проекции. Примерный список вопросов:

- 1. Что такое геоид?
- 2. Чем отличается эллипсоид вращения от референц-эллипсоида?
- 3. Что такое геоцентрический датум, приведите примеры.
- 4. Что такое местный (локальный) датум, приведите примеры?
- 5. Что такое картографическая проекция?
- 6. Какие факторы влияют на выбор картографической проекции?
- 7. Назовите виды искажений в картографических проекциях.
- 8. Как классифицируются картографические проекции по характеру искажений?
- 9. Как проекции подразделяются по виду нормальной картографической сетки или по виду вспомогательной поверхности?
- 10. Какая картографическая проекция использовалась для создания топографических карт масштабов $1:25\ 000-1:1\ 000\ 000$ в России?
- 11. Опишите основной принцип равноугольной поперечно-цилиндрической проекции Гаусса.

Тема (раздел): Дистанционное зондирование Земли. Примерный список вопросов:

- 1. Что такое дистанционное зондирование Земли (ДЗЗ)?
- 2. Какие существуют методы дистанционного зондирования?
- 3. Опишите общий принцип получения данных ДЗЗ.

- 4. Что такое глобальные системы позиционирования и каков их принцип работы?
- 5. Назовите основные диапазоны электромагнитного излучения, которые регистрируются при ДЗЗ.
- 6. Охарактеризуйте два основных типа сенсоров для регистрации электромагнитного излучения.
- 7. Как влияет атмосфера и погодные условия на регистрируемое сенсорами электромагнитное излучение?
- 8. Что такое спектральное разрешение снимка?
- 9. Что такое пространственное разрешение снимка?
- 10. Что такое временное разрешение снимка?
- 11. Что такое радиометрическое разрешение?
- 12. Приведите примеры отечественных и зарубежных съемочных систем для ДЗЗ.
- 13. Назовите возможные области применения данных ДЗЗ.
- 14. Назовите преимущества и недостатки использования данных ДЗЗ.

Критерии оценивания.

Оценка «отлично»: обучающийся дает максимально полные развернутые ответы на вопросы, демонстрирует всестороннее, систематическое и глубокое знание учебнопрограммного материала.

Оценка «хорошо»: обучающийся дает корректные ответы на вопросы, усвоил основную литературу, проявляет незначительные нарушения в установлении взаимосвязи между теоретическими понятиями.

Оценка «удовлетворительно»: студент обнаруживает знание основного учебного материала, но допускает погрешности в ответе.

Оценка «неудовлетворительно»: студент проявляет отрывочные знания, допускает принципиальные ошибки в ответах на вопросы; отсутствует интеграция знаний.

6.1.4 семестр 8 | Отчет по лабораторной работе

Описание процедуры.

Лабораторные работы выполняются каждым студентом индивидуально за компьютером с использованием специального открытого программного обеспечения. Процедура выполнения каждой лабораторной работы подробно описана в лабораторном практикуме: Территориальные информационные системы: лабораторный практикум / С. В. Солодянкина, Ю. В. Вантеева; Иркут. нац. исслед. техн. ун-т. — Иркутск: ИРНИТУ, 2019. — 90 с., а также на электронном курсе "Территориальные информационные системы" (сайт "Электронное обучение ИРНИТУ". URL: https://el.istu.edu/course/view.php? id=4004)

Критерии оценивания.

- 1. Лабораторная работа зачтена, если все пункты задания выполнены корректно, отчет содержит все необходимые составляющие, студент может объяснить/продемонстрировать, как выполнял работу, и может прокомментировать полученные результаты;
- 2. Лабораторная работа не зачтена, если:
- выполнены не все пункты задания;
- получен ошибочный результат и отчет составлен некорректно;
- отчет содержит материалы чужой работы;

- студент не может объяснить и продемонстрировать, как выполнял лабораторную работу.

6.1.5 семестр 9 | Отчет по лабораторной работе

Описание процедуры.

Лабораторные работы выполняются каждым студентом индивидуально за компьютером с использованием специального открытого программного обеспечения. Процедура выполнения каждой лабораторной работы подробно описана в лабораторном практикуме: Территориальные информационные системы: лабораторный практикум / С. В. Солодянкина, Ю. В. Вантеева; Иркут. нац. исслед. техн. ун-т. — Иркутск: ИРНИТУ, 2019. — 90 с., а также на электронном курсе "Территориальные информационные системы" (сайт "Электронное обучение ИРНИТУ". URL: https://el.istu.edu/course/view.php? id=4004)

Критерии оценивания.

- 1. Лабораторная работа зачтена, если все пункты задания выполнены корректно, отчет содержит все необходимые составляющие, студент может объяснить/продемонстрировать, как выполнял работу, и может прокомментировать полученные результаты;
- 2. Лабораторная работа не зачтена, если:
- выполнены не все пункты задания;
- получен ошибочный результат и отчет составлен некорректно;
- отчет содержит материалы чужой работы;
- студент не может объяснить и продемонстрировать, как выполнял лабораторную работу.

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
ПКР-2.11	Демонстрирует владение	Устное
	инструментами создания и обработки	собеседование по
	баз данных ГИС для разработки	теоретическим
	проектов планировки.	вопросам, отчеты
		по лабораторным
		работам.
ПКР-2.19	Демонстрирует владение	Устное
	инструментами создания и обработки	собеседование по
	баз данных ГИС для разработки схем	теоретическим
	градостроительного зонирования.	вопросам, отчеты
		по лабораторным
		работам.
ПКР-2.21	Демонстрирует владение	Устное
	инструментами создания и обработки	собеседование по
	баз данных ГИС для разработки схем	теоретическим
	территориального планирования	вопросам, отчеты

	по лабораторным
	работам

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 7, Типовые оценочные средства для проведения зачета по дисциплине

6.2.2.1.1 Описание процедуры

Для получения зачета необходимо выполнить все лабораторные работы и предоставить отчеты по ним, устно ответить на два теоретических вопроса из списка.

Пример задания:

Вопросы к зачету, 7 семестр:

- 1. Информационные системы (ИС). Важнейшие принципы построения эффективных ИС.
- 2. Классификации информационных систем (по объектам управления, функциональному назначению, по характеру использования результатов информации).
- 3. Территориальные информационные системы (ТИС). Главная функция ТИС. Уровни ТИС по охвату территории.
- 4. Решение каких задач необходимо предусмотреть при создании и внедрении ТИС.
- 5. Главные технологические элементы для создания программно-технологического сопровождения ТИС.
- 6. Блоки и разделы ТИС.
- 7. Возможные области применения ТИС и примеры их реализации.
- 8. Геоид. Форма Земли (эллипсоид вращения, референц-эллипсоид).
- 9. Датум: геоцентрический и местный (локальный).
- 10. Картографическая проекция.
- 11. Виды искажений в картографических проекциях. Классификация картографических проекций по характеру искажений.
- 12. Классификация проекций по виду нормальной картографической сетки или по виду вспомогательной поверхности.
- 13. Какие факторы влияют на выбор картографической проекции.
- 14. Какие проекции чаще всего используют для составления карт: мира, полушарий, материков, океанов, навигационных карт, России.
- 15. Картографическая проекция для топографических карт масштабов 1:25 000 1:1 000 000 в России, ее основной принцип.
- 16. Географическая пространственная информация. Основные типы источников географической информации.
- 17. Географические информационные системы. Типы ГИС. Структура ГИС.
- 18. Типовые вопросы, на которые способна ответить ГИС.
- 19. Основополагающие элементы базы пространственных данных (БД).
- 20. Общие подходы к представлению пространственных объектов в БД. Растровый способ представления пространственных данных.
- 21. Общие подходы к представлению пространственных объектов в БД. Векторный способ представления пространственных данных.
- 22. Преимущества и недостатки применения векторного и растрового способов для представления пространственных объектов в БД.
- 23. Связь ГИС с другими научными дисциплинами и технологиями. Геоинформатика.
- 24. Доступные источники векторных и растровых данных.

- 25. Геоинформационный анализ пространственных данных.
- 26. Виды геоинформационного анализа.
- 27. Географическая привязка растров. Типы преобразования (трансформации) растровых изображений.
- 28. Существующие области использования ГИС-технологий.
- 29. Какие наборы базовых операций ГИС используют в ТИС.
- 30. Основные отличия территориальных информационных систем от геоинформационных систем.
- 31. Геоинформационные системы и их отличие от систем автоматизированного проектирования (AutoCAD, ArchiCAD и т.п.).
- 32. Современные ГИС-программы (коммерческие и некоммерческие): возможности использования, преимущества и недостатки.

Вопросы к зачету, 8 семестр:

- 1. Что такое дистанционное зондирование?
- 2. Глобальные системы позиционирования: GPS и ГЛОНАСС, основные особенности и отличия.
- 3. Основные исторические этапы развития методов дистанционного зондирования Земли?
- 4. Что измеряют сенсоры на спутниках?
- 5. Основные диапазоны регистрации электромагнитного излучения спутниками?
- 6. Как взаимодействует электромагнитное излучение с растительностью?
- 7. Как взаимодействует электромагнитное излучение с водной поверхностью?
- 8. Как влияет атмосфера на регистрируемое сенсорами электромагнитное излучение?
- 9. Какие типы дистанционных сенсоров для регистрации электромагнитного излучения существуют, их принципы работ?
- 10. Спектральное разрешение снимка, примеры съемочных систем с разным спектральным разрешением?
- 11. Пространственное разрешение снимка, примеры съемочных систем с разным пространственным разрешением?
- 12. Временное разрешение снимка, примеры съемочных систем с разным временным разрешением?
- 13. Радиометрическое разрешение, примеры съемочных систем с разным радиометрическим разрешением?
- 14. Преимущества и недостатки наблюдений с применением дистанционного зондирования?
- 15. Возможные области применения данных дистанционного зондирования Земли?
- 16. Какие требования выдвигаются в общей теории картографии к изображению рельефа?
- 17. Какие способы и принципы применяют для изображения рельефа на картах?
- 18. Что такое цифровая модель рельефа (ЦМР)?
- 19. Основные источники данных для создания ЦМР?
- 20. Что из себя представляет триангуляционная модель (TIN-модель) пространственных данных?
- 21. Что из себя представляет сеточная модель (GRID) пространственных данных?
- 22. Классификация ЦМР суши по пространственному разрешению?
- 23. Какие данные можно извлечь в результате использования и обработки ЦМР?
- 24. Что такое угол наклона или крутизна склона?
- 25. Что такое экспозиция склона?
- 26. Примеры готовых глобальных и семиглобальных продуктов ЦМР?
- 27. Семиглобальная ЦМР SRTM.

6.2.2.1.2 Критерии оценивания

Зачтено	Не зачтено
Все лабораторные работы выполнены	Лабораторные работы не выполнены или
студентом самостоятельно (без	выполнены с ошибками, в отчетах
использования чужих материалов),	представлены некорректные результаты,
получены корректные результаты, отчеты	либо взяты результаты работы из отчета
содержат все необходимые составляющие.	другого студента. Слабо ориентируется в
Студент владеет понятийным аппаратом,	теоретическом материале, допускает
демонстрирует знание учебно-	принципиальные ошибки в ответах.
программного материала.	

6.2.2.2 Семестр 8, Типовые оценочные средства для проведения зачета по дисциплине

6.2.2.2.1 Описание процедуры

Для получения зачета необходимо выполнить все лабораторные работы и предоставить отчеты по ним, устно ответить на два теоретических вопроса из списка.

Пример задания:

Вопросы к зачету, 7 семестр:

- 1. Информационные системы (ИС). Важнейшие принципы построения эффективных ИС.
- 2. Классификации информационных систем (по объектам управления, функциональному назначению, по характеру использования результатов информации).
- 3. Территориальные информационные системы (ТИС). Главная функция ТИС. Уровни ТИС по охвату территории.
- 4. Решение каких задач необходимо предусмотреть при создании и внедрении ТИС.
- 5. Главные технологические элементы для создания программно-технологического сопровождения ТИС.
- 6. Блоки и разделы ТИС.
- 7. Возможные области применения ТИС и примеры их реализации.
- 8. Геоид. Форма Земли (эллипсоид вращения, референц-эллипсоид).
- 9. Датум: геоцентрический и местный (локальный).
- 10. Картографическая проекция.
- 11. Виды искажений в картографических проекциях. Классификация картографических проекций по характеру искажений.
- 12. Классификация проекций по виду нормальной картографической сетки или по виду вспомогательной поверхности.
- 13. Какие факторы влияют на выбор картографической проекции.
- 14. Какие проекции чаще всего используют для составления карт: мира, полушарий, материков, океанов, навигационных карт, России.
- 15. Картографическая проекция для топографических карт масштабов 1:25 000 1:1 000 000 в России, ее основной принцип.
- 16. Географическая пространственная информация. Основные типы источников географической информации.
- 17. Географические информационные системы. Типы ГИС. Структура ГИС.
- 18. Типовые вопросы, на которые способна ответить ГИС.
- 19. Основополагающие элементы базы пространственных данных (БД).
- 20. Общие подходы к представлению пространственных объектов в БД. Растровый способ представления пространственных данных.

- 21. Общие подходы к представлению пространственных объектов в БД. Векторный способ представления пространственных данных.
- 22. Преимущества и недостатки применения векторного и растрового способов для представления пространственных объектов в БД.
- 23. Связь ГИС с другими научными дисциплинами и технологиями. Геоинформатика.
- 24. Доступные источники векторных и растровых данных.
- 25. Геоинформационный анализ пространственных данных.
- 26. Виды геоинформационного анализа.
- 27. Географическая привязка растров. Типы преобразования (трансформации) растровых изображений.
- 28. Существующие области использования ГИС-технологий.
- 29. Какие наборы базовых операций ГИС используют в ТИС.
- 30. Основные отличия территориальных информационных систем от геоинформационных систем.
- 31. Геоинформационные системы и их отличие от систем автоматизированного проектирования (AutoCAD, ArchiCAD и т.п.).
- 32. Современные ГИС-программы (коммерческие и некоммерческие): возможности использования, преимущества и недостатки.

Вопросы к зачету, 8 семестр:

- 1. Что такое дистанционное зондирование?
- 2. Глобальные системы позиционирования: GPS и ГЛОНАСС, основные особенности и отличия.
- 3. Основные исторические этапы развития методов дистанционного зондирования Земли?
- 4. Что измеряют сенсоры на спутниках?
- 5. Основные диапазоны регистрации электромагнитного излучения спутниками?
- 6. Как взаимодействует электромагнитное излучение с растительностью?
- 7. Как взаимодействует электромагнитное излучение с водной поверхностью?
- 8. Как влияет атмосфера на регистрируемое сенсорами электромагнитное излучение?
- 9. Какие типы дистанционных сенсоров для регистрации электромагнитного излучения существуют, их принципы работ?
- 10. Спектральное разрешение снимка, примеры съемочных систем с разным спектральным разрешением?
- 11. Пространственное разрешение снимка, примеры съемочных систем с разным пространственным разрешением?
- 12. Временное разрешение снимка, примеры съемочных систем с разным временным разрешением?
- 13. Радиометрическое разрешение, примеры съемочных систем с разным радиометрическим разрешением?
- 14. Преимущества и недостатки наблюдений с применением дистанционного зондирования?
- 15. Возможные области применения данных дистанционного зондирования Земли?
- 16. Какие требования выдвигаются в общей теории картографии к изображению рельефа?
- 17. Какие способы и принципы применяют для изображения рельефа на картах?
- 18. Что такое цифровая модель рельефа (ЦМР)?
- 19. Основные источники данных для создания ЦМР?
- 20. Что из себя представляет триангуляционная модель (TIN-модель) пространственных данных?
- 21. Что из себя представляет сеточная модель (GRID) пространственных данных?
- 22. Классификация ЦМР суши по пространственному разрешению?
- 23. Какие данные можно извлечь в результате использования и обработки ЦМР?

- 24. Что такое угол наклона или крутизна склона?
- 25. Что такое экспозиция склона?
- 26. Примеры готовых глобальных и семиглобальных продуктов ЦМР?
- 27. Семиглобальная ЦМР SRTM. _

6.2.2.2 Критерии оценивания

Зачтено	Не зачтено
Все лабораторные работы выполнены	Лабораторные работы не выполнены или
студентом самостоятельно (без	выполнены с ошибками, в отчетах
использования чужих материалов),	представлены некорректные результаты,
получены корректные результаты, отчеты	либо взяты результаты работы из отчета
содержат все необходимые составляющие.	другого студента. Слабо ориентируется в
Студент владеет понятийным аппаратом,	теоретическом материале, допускает
демонстрирует знание учебно-	принципиальные ошибки в ответах.
программного материала.	

6.2.2.3 Семестр 9, Типовые оценочные средства для проведения экзамена по дисциплине

6.2.2.3.1 Описание процедуры

Для допуска к экзамену необходимо сдать все отчеты по лабораторным работам. Экзамен проводится в устной форме по билетам. Один вопрос в билете теоретический из списка вопросов к экзамену, который предполагает устный ответ, второй вопрос - это практическое задание из практического блока, которое выполняется за компьютером в соответствующей программе. Студенту дается время на подготовку к ответу 20-25 минут (можно вести записи на листах, выданных преподавателем). При подготовке к ответу использование мобильного телефона, тетрадей с конспектами, учебников и других вспомогательных материалов не допускается. При ответе на вопросы по билету экзаменатор может задать студенту дополнительные вопросы.

Пример задания:

Вопросы к экзамену. Теоретическая часть:

- 1. Территориальные информационные системы (ТИС). Главная функция ТИС. Уровни ТИС по охвату территории. Блоки и разделы ТИС.
- 2. Решение каких задач необходимо предусмотреть при создании и внедрении ТИС. Главные технологические элементы для создания программно-технологического сопровождения ТИС.
- 3. Возможные области применения ТИС и примеры их реализации.
- 4. Географическая пространственная информация. Основные типы источников географической информации.
- 5. Геоид. Форма Земли (эллипсоид вращения, референц-эллипсоид). Понятие «датум»: геоцентрический и местный (локальный).
- 6. Картографическая проекция. Какие факторы влияют на выбор картографической проекции.
- 7. Виды искажений в картографических проекциях. Классификация картографических проекций по характеру искажений. Классификация проекций по виду нормальной картографической сетки или по виду вспомогательной поверхности.

- 8. Картографическая проекция для топографических карт масштабов 1:25 000 1:1 000 000 в России, ее основной принцип.
- 9. Географические информационные системы. Типы ГИС. Структура ГИС. Связь ГИС с другими научными дисциплинами и технологиями.
- 10. Типовые вопросы, на которые способна ответить ГИС.
- 11. Основополагающие элементы базы пространственных данных (БД).
- 12. Общие подходы к представлению пространственных объектов в БД. Растровый способ представления пространственных данных.
- 13. Общие подходы к представлению пространственных объектов в БД. Векторный способ представления пространственных данных.
- 14. Преимущества и недостатки применения векторного и растрового способов для представления пространственных объектов в БД.
- 15. Геоинформационный анализ пространственных данных. Виды геоинформационного анализа.
- 16. Географическая привязка растров. Типы преобразования (трансформации) растровых изображений.
- 17. Существующие области использования ГИС-технологий.
- 18. Какие наборы базовых операций ГИС используют в ТИС.
- 19. Основные отличия территориальных информационных систем от геоинформационных систем.
- 20. Дистанционное зондирование Земли (ДЗЗ), основные методы.
- 21. Возможные области применения данных ДЗЗ. Преимущества и недостатки их использования.
- 22. Основные диапазоны регистрации электромагнитного излучения и их возможности. Как влияет атмосфера на регистрируемое сенсорами электромагнитное излучение?
- 23. Типы сенсоров для регистрации электромагнитного излучения, их принципы работы.
- 24. Спутниковые изображения и их свойства. Основной принцип получения таких данных.
- 25. Спектральное разрешение снимка, примеры съемочных систем с разным спектральным разрешением.
- 26. Пространственное разрешение снимка, примеры съемочных систем с разным пространственным разрешением.
- 27. Временное разрешение снимка, примеры съемочных систем с разным временным разрешением.
- 28. Радиометрическое разрешение, примеры съемочных систем с разным радиометрическим разрешением.
- 29. Спутники Landsat. Основные характеристики спутника Landsat 8 (временное, пространственное, спектральное разрешение, спектральные диапазоны).
- 30. Комбинации спектральных каналов Landsat 8 и их возможности.
- 31. Дешифрирование (интерпретация) космических снимков, виды дешифрирование, основные этапы.
- 32. Визуальное дешифрирование космических снимков. Преимущества и недостатки данного метода.
- 33. Прямые и косвенные дешифровочные признаки.
- 34. Классификация космических снимков. Спектральные классы.
- 35. Классификация без обучения. Преимущества и недостатки.
- 36. Классификация с обучением. Преимущества и недостатки.
- 37. Доступные источники векторных и растровых данных.
- 38. Цифровая модель рельефа (ЦМР). Основные источники данных для создания ЦМР.
- 39. Триангуляционная модель (TIN-модель) пространственных данных. Сеточная модель (GRID) пространственных данных.

- 40. Классификация ЦМР суши по пространственному разрешению.
- 41. Какие данные можно извлечь в результате использования и обработки ЦМР. Что такое угол наклона или крутизна склона. Что такое экспозиция склона.
- 42. Примеры готовых глобальных и семиглобальных продуктов ЦМР. Семиглобальная ЦМР SRTM.

Практическая часть:

- 1. Создание проектов в QGIS и SAGA. Настройка системы координат и проецирование слоев.
- 2. Создание и редактирование векторных слоев (добавление новых объектов, разбивка объекта, редактирование таблицы атрибутов и т.д.). Владение инструментами оцифровки.
- 3. Геообработка векторных данных (буферизация, объединение, пересечение, обрезка, разность).
- 4. Использование калькулятора полей.
- 5. Определение геометрических характеристик географического пространства: расстояния между точками, длина линейных объектов, периметр полигона, площадь полигона.
- 6. Привязка растров.
- 7. Векторизация растра.
- 8. Методы фильтрации растрового изображения.
- 9. Визуализация результатов картографирования. Компоновка карт.

Обработка и анализ космических снимков

- 10. Синтез цветного изображения космического снимка.
- 11. Экспорт в многоканальное растровое изображение (Geotiff).
- 12. Повышение пространственного разрешения космического снимка (паншарпенинг).
- 13. Классификация космического снимка без обучения методом ISODATA.

Обработка и анализ цифровых моделей рельефа

- 14. Гидрологическая коррекция цифровых моделей рельефа.
- 15. Вычисление углов наклона и экспозиции склонов.
- 17. Построение изолиний.
- 18. Построение речной сети и определение границ водосборных бассейнов.
- 20. Генерация теневой отмывки рельефа и трехмерного изображения рельефа.

6.2.2.3.2 Критерии оценивания

Отлично	Хорошо	Удовлетворительн о	Неудовлетворительно
Обучающийся	Обучающийся	Обучающийся	Обучающийся
показывает	показывает	показывает знание	показывает
всестороннее,	достаточно полное	основного	существенные
систематическое и	знание материала,	материала, в объеме,	пробелы в знании
глубокое знание	успешно	необходимом для	основного учебно-
учебно-	выполняет	дальнейшей учебы и	программного
программного	предусмотренные	предстоящей работы	материала, допускает
материала, умение	программой	по профессии,	принципиальные
свободно	задания.	справляется с	ошибки в ответах и
выполнять		выполнением	выполнении
задания,		заданий,	предусмотренных
предусмотренные		предусмотренных	программой заданий
программой.		программой, но	
		допускает	
		погрешности в	
		ответе или в	

	выполнении заданий	

7 Основная учебная литература

- 1. Лурье И. К. Геоинформационное картографирование. Методы геоинформатики и цифровой обработки космических снимков: учебник: пособие для вузов по специальности 020501 Картография, направления 020500 География и картография / И. К. Лурье, 2008. 423.
- 2. Кашкин В. Б. Дистанционное зондирование Земли из Космоса. Цифровая обработка изображений [Электронный ресурс] / В. Б. Кашкин, А. И. Сухинин, 2001. 264.
- 3. Цветков В. Я. Основы геоинформатики / В. Я. Цветков, 2023. 188.
- 4. Дударева О. В. Геоинформационный анализ [Электронный ресурс] : учебное пособие / О. В. Дударева, А. В. Королева, 2012. 64.
- 5. Золотова Е. В. Основы кадастра: территориальные информационные системы : учебник для вузов по направлению "Архитектура" / Е. В. Золотова, 2012. 413.
- 6. Солодянкина С. В. Территориальные информационные системы : лабораторный практикум / С. В. Солодянкина, Ю. В. Вантеева, 2019. 90.

8 Дополнительная учебная литература и справочная

- 1. Журкин И. Г. Геоинформационные системы : учебное пособие для вузов / И. Г. Журкин, С. В. Шайтура; ред. И. Г. Журкин, 2009. 272.
- 2. Дистанционное зондирование и географические информационные системыТеория и практика цифровой обработки изображений / И. К. Лурье, А. Г. Косиков, 2003. 166.
- 3. Чандра А. М. Дистанционное зондирование и географические информационные системы: учебник / А. М. Чандра, С. К. Гош; пер. с англ. А. В. Кирюшина, 2008. 307.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/
- 3. https://elibrary.ru/
- 4. https://qgis.org/ru/site/index.html
- 5. http://www.saga-gis.org/en/index.html
- 6. http://gis-lab.info/
- 7. https://openstreetmap.ru/#map=3/62/88
- 8. http://www.openstreetmap.org
- 9. https://nextgis.ru/
- 10. https://earthexplorer.usgs.gov/
- 11. https://glovis.usgs.gov/
- 12. http://www.gisa.ru/
- 13. http://kosmosnimki.ru/
- 14. https://google-earth.ru.softonic.com/
- 15. http://sasgis.ru/sasplaneta/
- 16. https://eosda.com
- 17. https://earthexplorer.usgs.gov/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/
- 3. https://elibrary.ru/
- 4. https://fgistp.economy.gov.ru/
- 5. https://order.cgkipd.ru/

11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем

1. Microsoft Office 2007 Standard - 2003 Suites и 2007 Suites - поставка 2010

12 Материально-техническое обеспечение дисциплины

- 1. Moнитор LCD 17 Samsung 710N
- 2. Цифровая камера Olympus SP 800 UZ
- 3. 318003 Коммутатор FS308 N-FS38G06018616
- 4. Системный блок A64 3000/200/512/GF6600/DVD+RW/FDD/modem
- 5. Телефакс Panasonic KX-FP 218
- 6. Ноутбук ACER Aspire 5920G/PCI-E256Mb/DDRII 1024/160/DVD+RW/modem/camera/15.4 WXGA
- 7. Сканер HP SJ 8270 C
- 8. Компьютер "i7-4770(3.4)/16Gb/1Tb/GF 1024/23.6""
- 9. МФУ A4 Kyocera ECOSYS M2030 dn Принтер, Копир, Сканер, 30ppm, Duplex, LAN, USB
- 10. Проектор мультимедиа BenQ MW621ST(с экраном 2*2м)
- 11. Компьютер "i7-4770(3.4)/16Gb/1Tb/GF 1024/23.6""
- 12. Компьютер "i7-4770(3.4)/16Gb/1Tb/GF 1024/23.6""
- 13. Компьютер "i7-4770(3.4)/16Gb/1Tb/GF 1024/23.6""
- 14. Компьютер "i7-4770(3.4)/16Gb/1Tb/GF 1024/23.6""
- 15. Компьютер "i7-4770(3.4)/16Gb/1Tb/GF 1024/23.6""
- 16. Сканер Mustek 1200s
- 17. Компьютер "i7-4770(3.4)/16Gb/1Tb/GF 1024/23.6""
- 18. Компьютер "i7-4770(3.4)/16Gb/1Tb/GF 1024/23.6""
- 19. Компьютер "i7-4770(3.4)/16Gb/1Tb/GF 1024/23.6""

20. Компьютер "i7-4770(3.4)/16Gb/1Tb/GF 1024/23.6""