Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Структурное подразделение «Автоматизации и управления»

УТВЕРЖДЕНА:

на заседании кафедры Протокол №<u>11</u> от <u>11 февраля 2025</u> г.

Рабочая программа дисциплины

«АЛГОРИТМЫ РЕШЕНИЯ НЕСТАНДАРТНЫХ ЗАДАЧ»
Направление: 27.04.05 Инноватика
Исследования и разработки, технологическое предпринимательство в топливно-
энергетическом комплексе
Квалификация: Магистр
Форма обучения: очная

Документ подписан простой электронной подписью Составитель программы: Рогов Виктор Юрьевич Дата подписания: 04.06.2025

Документ подписан простой электронной подписью Утвердил: Елшин Виктор

Владимирович

Дата подписания: 20.06.2025

Документ подписан простой электронной подписью Согласовал: Конюхов Владимир Юрьевич Дата подписания: 04.06.2025

1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

1.1 Дисциплина «Алгоритмы решения нестандартных задач» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ОПК-10 Способен разрабатывать, комбинировать и	
адаптировать алгоритмы и программные приложения,	
пригодные для решения практических задач	ОПК-10.2
цифровизации в области профессиональной	
деятельности	
ОПК-3 Способен самостоятельно решать задачи	
управления в технических системах на базе	ОПК-3.2
последних достижений науки и техники	
ОПК-8 Способен выполнять эксперименты на	
действующих объектах по заданным методикам и	
обрабатывать результаты с применением	ОПК-8.3
современных информационных технологий и	
технических средств	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ОПК-10.2	Способен применять алгоритмы решения нестандартных задач при планировании и проведении работ по проекту	Знать алгоритмы решения нестандартных задач при планировании и проведении работ по проекту Уметь осуществлять анализ современных явлений и проблем и прогноз развития экономических систем Владеть навыками рационального мышления для решения проблем, возникающих при выполнении исследовательских работ
ОПК-3.2	Способен произвести поиск решений изобретательских задач в виде программы планомерно направленных действий	Знать решения изобретательских задач в виде программы планомерно направленных действий Уметь использовать экспериментальные и теоретические методы исследования в профессиональной деятельности Владеть методологией поиска решений в виде программы планомерно направленных действий, создание методологической основы для подготовки конструкторских и технологических научных

		решений
ОПК-8.3	Способен использовать преимущества современных инструментальных средств для решения прикладных задач в управления инновационным проектом	Знать преимущества современных инструментальных средств для решения прикладных задач в управления инновационным проектом Уметь выполнять поиск наиболее эффективного решения задачи с помощью алгоритма решения нестандартных задач Владеть навыками информационно-аналитической профессиональной деятельности по системному анализу технических систем

2 Место дисциплины в структуре ООП

Изучение дисциплины «Алгоритмы решения нестандартных задач» базируется на результатах освоения следующих дисциплин/практик: «Статистические методы в управлении инновациями»

Дисциплина является предшествующей для дисциплин/практик: «Инвестиционная инфраструктура»

3 Объем дисциплины

Объем дисциплины составляет – 2 ЗЕТ

Вид учебной работы	Трудоемкость в академич (Один академический час со минутам астрономическ	ответствует 45
	Всего	Семестр № 2
Общая трудоемкость дисциплины	72	72
Аудиторные занятия, в том числе:	13	13
лекции	0	0
лабораторные работы	0	0
практические/семинарские занятия	13	13
Самостоятельная работа (в т.ч. курсовое проектирование)	59	59
Трудоемкость промежуточной аттестации	0	0
Вид промежуточной аттестации (итогового контроля по дисциплине)	Зачет	Зачет

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр № 2

N₂	Наименование	Виды контактной работы							Форма	
п/п	раздела и темы	Лек	Лекции ЛР ПЗ(СЕМ)			PC	текущего			
	дисциплины	No	Кол.	No	Кол.	No	Кол.	No	Кол.	контроля

			час.		час.		час.		час.	
1	2	3	4	5	6	7	8	9	10	11
1	Основные понятия и определения ТРИЗ и АРИЗ	1				1	4	3	16	Устный опрос
2	Мобилизация и применение вещественно-полевых ресурсов	2				2	4	3	16	Устный опрос
3	Анализ способа устранения основного противоречия задачи. Развитие полученной идеи	3				3	2	2	16	Устный опрос
4	Сущность, принципы и этапы функционально- стоимостного анализа (ФСА)	4				4	2	2	6	Устный опрос
5	Методы поиска решений нестандартных задач	5				5	1	1	5	Устный опрос
	Промежуточная аттестация									Зачет
	Всего						13		59	

4.2 Краткое содержание разделов и тем занятий

Семестр № 2

No	Тема	Краткое содержание			
1	Основные понятия и	Цель, задачи, построение курса. ТРИЗ и АРИЗ.			
	определения ТРИЗ и	Место ТРИЗ в развитии отраслевых знаний,			
	АРИЗ	самостоятельности и творческого мышления.			
		Основные понятия теории решения			
		изобретательских задач (ТРИЗ). Структура ТРИЗ.			
		История создания ТРИЗ. Уровни изобретений в			
		ТРИЗ. Развитие творческого воображения.			
		Основные понятия и определения ТРИЗ и АРИЗ.			
		Этапы АРИЗ. Техническая система (ТС). Схема			
		формирования ТС. Физико-технические эффекты и			
		физический принцип действия ТС. Физическая			
		операция. Техническая функция и техническое			
		решение.			
2	Мобилизация и	Вещества и поля в задаче. Готовые и производные			
	применение	вещественные ресурсы. Внутрисистемные и			
	вещественно-полевых	надсистемные вещественно-полевые ресурсы.			
	ресурсов	Ресурсы пространства. Ресурсы времени.			
		Функциональные ресурсы. Структурное			
		моделирование технической системы.			
3	Анализ способа	Понятие «идеальности» в ТРИЗ. Полезная			
	устранения основного	функция. Факторы расплаты за выполнение			

	противоречия задачи.	полезной функции. Идеальная ТС. Идеальное			
	Развитие полученной	вещество. Идеальный конечный результат (ИКР).			
	идеи	Составление прогноза развития системы			
4	Сущность, принципы и	Понятие и виды ФСА. ТРИЗ и ФСА. Особенности			
	этапы функционально-	ФСА в ТРИЗ. Принципы, формы ФСА и сферы их			
	стоимостного анализа	применения. Методы ФСА на отдельных этапах.			
	(ФСА)				
5	Методы поиска	Приемы открытия новых явлений и			
	решений	закономерностей. Жизненная стратегия			
	нестандартных задач	творческой личности. Группа средств			
		направленного поискаМорфологический анализ и			
		синтез. Метод контрольных вопросов.			
		Представление задач и решений через типовые			
		структурные модели. Функционально-			
		ориентированный поиск решений. Закономерности			
		развития систем. Виды информационных фондов и			
		работа с ними. Техника прогнозирования развития			
		систем			

4.3 Перечень лабораторных работ

Лабораторных работ не предусмотрено

4.4 Перечень практических занятий

Семестр № 2

Nº	Темы практических (семинарских) занятий	Кол-во академических часов
1	Анализ задачи. Анализ модели задачи	4
2	Построение вепольных систем	4
3	Определение идеального конечного решения и технического противоречия	2
4	Содержание этапов функционально- стоимостного анализа	2
5	Индивидуальные методы решения нестандартных задач	1

4.5 Самостоятельная работа

Семестр № 2

N₂	Вид СРС	Кол-во академических часов
1	Подготовка к зачёту	5
2	Подготовка к практическим занятиям (лабораторным работам)	22
3	Проработка разделов теоретического материала	32

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: Интерактивная лекция

- 5 Перечень учебно-методического обеспечения дисциплины
- 5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по практическим занятиям

Методические указания по проведению практических (семинарских) занятий по дисциплине "Алгоритмы решения нестандартных задач": направление подготовки 27.03.05 "Инноватика": профиль бакалавриата "Управление инновациями в промышленности (по отраслям)": квалификация бакалавр / Иркут. нац. исслед. техн. ун-т, Ин-т экономики, упр. и права, Каф. упр. пром. предприятиями, 2017. - 7.

5.1.2 Методические указания для обучающихся по самостоятельной работе:

Методические указания по самостоятельной работе студентов по дисциплине "Алгоритмы решения нестандартных задач": направление подготовки: 27.03.05 "Инноватика": профиль: "Управление инновациями в промышленности (по отраслям)": квалификация: бакалавр / Иркут. нац. исслед. техн. ун-т, Ин-т экономики, упр. и права, Каф. упр. пром. предприятиями, 2017. - 11.

- 6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине
- 6.1 Оценочные средства для проведения текущего контроля
- 6.1.1 семестр 2 | Устный опрос

Описание процедуры.

В рамках практического занятия студент отвечает на контрольные вопросы по пройденным темам раздела.

Тема 1. Основные понятия и определения ТРИЗ и АРИЗ

Пример задания:

- 1. Что такое нежелательный эффект?
- 2. Почему следует избавляться от специальных терминов в формулировке задачи?
- 3. По качеству ресурсы делятся на полезные, нейтральные и вредные, а по количеству на неограниченные (много), достаточные (хватает) и не достаточные (мало). В каком порядке следует использовать эти ресурсы для создания X-элемента?

Тема 2. Мобилизация и применение вещественно-полевых ресурсов

Пример задания:

- 1. Известны три способа разрешения противоречия: разделением противоречивых требований в пространстве системы, разделение противоречивых требований во времени и изменение структуры системы. Если для решения задачи пришлось вынести какой-либо процесс из общего цеха, то это разрешение какого противоречия?
- 2. Известны три способа разрешения противоречия: разделением противоречивых требований в пространстве системы, разделение противоречивых требований во времени и изменение структуры системы. Если для решения задачи пришлось разделить какоелибо вещество системы на мелкие части, то это разрешение какого противоречия?
- 3. Что является первым этапом в АРИЗ?

Тема 3. Анализ способа устранения основного противоречия задачи

Пример задания:

- 1. Дайте характеристику идеальному процессу в ТРИЗ.
- 2. Что такое идеальное вещество ТРИЗ?
- 3. Что такое ресурсы?

Критерии оценивания.

Раздел считается усвоенным при условии, что студент логично и в полном объеме раскрыл содержания всех контрольных вопросов.

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
ОПК-10.2	Уверенно применяет основные методы исследований, с учетом специфических особенностей проведения научного исследования в области инноватики	Устный опрос
ОПК-3.2	Способен формулировать цели проекта, критерии и способы достижения целей, определять структуры их взаимосвязей, выявлять приоритеты решения задач при производстве	Устный опрос
ОПК-8.3	Демонстрирует способность к применению алгоритмов решения нестандартных задач при реализации инновационных проектов	Устный опрос

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 2, Типовые оценочные средства для проведения зачета по дисциплине

6.2.2.1.1 Описание процедуры

Зачет по дисциплине проводится в формате тестирования, включающим 30 вопросов с вариантами ответов. На подготовку обучающемуся отведено 45 минут. Для объективного оценивания знаний могут быть заданы дополнительные вопросы по темам курса

Пример задания:

Варианты контрольных тестов для получения зачета:

- 1. Один из законов развития систем утверждает, что любая система развивается в направлении увеличения своей идеальности. Понятие идеальности системы означает:
- а) максимальное выполнение своего предназначения (функции);
- б) достижение некоторого предельного уровня своего развития;
- в) минимальные затраты на ее функционирование;
- г) что системы нет, а ее функция выполняется;
- д) минимальные затраты при максимальном уровне функционирования.
- 2. Теория утверждает, что системы развиваются. Постарайтесь выбрать ответ, наиболее точно характеризующий это утверждение.
- а) системы не могут развиваться, их развивают люди;
- б) системы не развиваются, а изменяются по желанию людей;
- в) системы развиваются в силу необходимости соответствовать требованиям надсистемы (в частности людей);
- г) системы развиваются поскольку стремятся к идеальности;
- д) системы развиваются в соответствии с законами развития.
- 3. Представим себе, что на «рынке систем» имеются несколько альтернативных систем, отличающихся уровнем выполнения функции и стоимостью. Какая система выиграет конкуренцию (т.е. станет массово применяться)?
- а) та, которая имеет меньшую стоимость;
- б) та, которая имеет больший коэффициент идеальности;
- в) та, которая имеет более высокий показатель выполнения функции;
- г) та, которая имеет меньшие затраты при производстве;
- д) та, которую выпускает более состоятельный собственник.
- 4. Коэффициент идеальности системы при ее развитии стремиться к:
- а) к нулю;
- б) к максимальному значению;
- в) к заданному производителем значению;
- г) он не может куда-то стремиться какой получиться, такой и будет;
- д) к бесконечности.
- 5. Противоречие это:
- а) конфликт между кем-то и кем-то;
- б) несовпадение взглядов;
- в) несовместимость требований;
- г) несовместимость двух противоположных требований к одному компоненту или системе;
- д) верного ответа нет.
- 6. Административное противоречие закрепляет:
- а) только требование к системе по ее улучшению;
- б) требование к системе по ее улучшению и возникающий недостаток;
- в) желание администрации улучшить систему не увеличивая затрат;
- г) желание администрации что-то изменить;
- д) только требование к системе не ухудшать ее показатели.
- 7. Техническое противоречие это:
- а) неспособность системы выполнять свою функцию;
- б) несовместимость двух несовместимых действий (требований) предъявленных к системе;
- в) несовместимость двух требований предъявленных к одному компоненту системы;
- г) несовместимость требований предъявленных к системе;
- д) несовместимость двух свойств предъявленных к одному компоненту системы.

- 8. Всегда ли в формулировке противоречия присутствуют противоположные требования (действия или свойства)?
- а) всегда;
- б) иногда;
- в) никогда;
- г) не противоположный, взаимозависимые;
- д) правильного ответа нет.
- 9. Структура модели задачи включает:
- а) конфликтующую пару, противоречие и ресурсы;
- б) конфликтующую пару, противоречие и ограничение;
- в) конфликтующую пару, противоречие и х-элемент;
- г) конфликтующую пару, противоречие, х-элемент и ограничения;
- д) конфликтующую пару и противоречие;
- 10. Структура технической системы это:
- а) совокупность компонентов системы;
- б) совокупность связей между компонентами системы;
- в) совокупность связей между компонентами системы и между ними и компонентами надсистемы;
- г) совокупность требований к компонентам системы;
- д) совокупность всех связей и требований к системе.
- 11. Возможно ли развитие системы без возникновения противоречия в ней?
- а) да;
- б) когда, как;
- в) нет;
- г) смотря для какой системы;
- д) да, в природных системах.
- 12. Главное противоречие любой системы состоит в том, что:
- а) система должна выполнять свою функцию, но тогда не может изменяться (развиваться), чтобы всегда соответствовать требованиям надсистемы и должна изменяться, чтобы соответствовать требованиям надсистемы, но тогда не может выполнять свою функцию;
- б) система должна (развиваться), чтобы всегда соответствовать требованиям надсистемы и не должна изменяться, чтобы соответствовать требованиям надсистемы;
- в) система должна изменяться, чтобы соответствовать требованиям надсистемы, но тогда не может выполнять свою функцию;
- г) система должна выполнять свою функцию, чтобы всегда соответствовать требованиям надсистемы и должна изменяться, чтобы всегда соответствовать требованиям надсистемы;
- д) система должна выполнять свою функцию, чтобы соответствовать требованиям надсистемы, и не может выполнять свою функцию, чтобы не вредить ей.
- 13. Физическое противоречие на макро-уровне это:
- а) два несовместимых, противоположных действия, предъявляемые к одному компоненту системы;
- б) два несовместимых, противоположных требования, предъявляемые к одному компоненту системы;
- в) два несовместимых, противоположных свойства, предъявляемые к одному компоненту системы;
- г) два свойства, предъявляемые к одному компоненту системы, которые принципиально не могут быть у него;
- д) два несовместимых действия, которые должны выполнять частицы компонента системы;
- 14. Физическое противоречие на микро-уровне это:
- а) два несовместимых действия которые должны выполнять частицы компонента

системы;

- б) два несовместимых свойства которые должны соответствовать частицы компонента системы;
- в) два несовместимых действия которые должны выполнять компоненты системы;
- г) два несовместимых действия которые должен выполнять один компонент системы;
- д) два несовместимых действия которые должны выполнять частицы компонента системы.
- 15. Полезная функция системы это:
- а) то, что выполняет система, ее предназначение;
- б) то действие, которое выполняет одна система над другой системой;
- в) действие, выполняемое системой над надсистемным компонентов;
- г) действие, выполняемое системой над надсистемным компонентов с целью изменения его свойств;
- д) действие выполняемое системой над надсистемным компонентов с целью изменения его свойств для удовлетворения потребности надсистемы.
- 16. Главная функция системы это:
- а) полезное действие, ради которого и создавалась система;
- б) полезное действие, выполняемое системой для удовлетворения потребности надсистемы;
- в) последнее полезное действие, выполняемое системой над надсистемным компонентом, ради преобразования которого и создавалась эта система;
- г) любое полезное действие, направленное на надсистемные компоненты и меняющие их свойства в нужном надсистеме направлении;
- д) та, которую назначает исследователь системы.
- 17. Структура формулировки функции должна содержать:
- а) перечень компонентов системы и их связей, а так же перечень компонентов надсистемы и их связей с компонентами системы и их назначение;
- б) название носителя функции, действие, которое он выполняет, объект над которым выполняется это действие и условия при которых оно выполняется;
- в) название носителя функции, объект над которым выполняется это действие и условия при которых оно выполняется;
- г) действие, которое он выполняет, объект над которым выполняется это действие и условия при которых оно выполняется;
- д) название носителя функции, действие, которое он выполняет, объект над которым выполняется это действие.
- 18. Назовите три ключевых оператора системы РВС
- а) Работа, Время, Стоимость
- б) Размер, Вещество, Стоимость
- в) Работа, Вещество, Стоимость
- г) Размер, Время, Стоимость.

6.2.2.1.2 Критерии оценивания

Зачтено	Не зачтено
Обучающийся демонстрирует знание	Обучающийся демонстрирует
основного учебно-программного	значительные пробелы в знаниях
материала	ОСНОВНОГО
в объеме, необходимом для дальнейшей	учебно-программного материала, допустил
учебы предусмотренной программой	принципиальные ошибки в выполнении
дисциплины. Количество верных ответов	тестового задания предусмотренного
при контрольном тестирование должно	программой и не способен продолжить
превышать 80%.	обучение или приступить по окончании

университета к профессиональной
деятельности. Количество верных ответов
при контрольном тестирование менее 60%.

7 Основная учебная литература

- 1. Методические указания по проведению практических (семинарских) занятий по дисциплине "Алгоритмы решения нестандартных задач": направление подготовки 27.03.05 "Инноватика": профиль бакалавриата "Управление инновациями в промышленности (по отраслям)": квалификация бакалавр / Иркут. нац. исслед. техн. ун-т, Ин-т экономики, упр. и права, Каф. упр. пром. предприятиями, 2017. 7.
- 2. Методические указания по самостоятельной работе студентов по дисциплине "Алгоритмы решения нестандартных задач": направление подготовки: 27.03.05 "Инноватика": профиль: "Управление инновациями в промышленности (по отраслям)": квалификация: бакалавр / Иркут. нац. исслед. техн. ун-т, Ин-т экономики, упр. и права, Каф. упр. пром. предприятиями, 2017. 11.
- 3. Конопатов С. Н. Алгоритмы решения нестандартных задач : учебное пособие / С. Н. Конопатов, 2020. 228.

8 Дополнительная учебная литература и справочная

1. Конопатов С. Н. Алгоритмы решения нестандартных задач : учебник / С. Н. Конопатов, 2021. - 228.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/

11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем

- 1. Microsoft Windows Seven Professional (Microsoft Windows Seven Starter) Seven, Vista, XP_prof_64, XP_prof_32 поставка 2010
- 2. Microsoft Office 2007 Standard 2003 Suites и 2007 Suites поставка 2010

12 Материально-техническое обеспечение дисциплины

1. Лекционная аудитория, оснащенная специализированной учебной мебелью, техническими средствами обучения: доска, настенный экран, мультимедийное оборудование. Для проведения практических занятий – компьютерный класс.