Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ **УНИВЕРСИТЕТ»**

Структурное подразделение «Отделение прикладной математики и информатики»

УТВЕРЖДЕНА:

на заседании отделения Протокол № 7 от 28 января 2025 г.

Рабочая программа дисциплины

«ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА»						
00.00.04.14.1						
Направление: 09.03.01 Информатика и вычислительная техника						
Интеллектуальные системы обработки информации и управления						
Квалификация: Бакалавр						
Форма обучения: очная						

Документ подписан простой электронной подписью Составитель программы: Огнёв Игорь Анатольевич Дата подписания: 07.06.2025 Документ подписан простой электронной подписью Утвердил: Дударева Оксана Витальевна

Дата подписания: 07.06.2025

Документ подписан простой электронной подписью Согласовал: Кононенко Роман Владимирович Дата подписания: 15.06.2025

- 1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы
- 1.1 Дисциплина «Вычислительная математика» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ОПК ОС-1 Способность решать задачи	
профессиональной деятельности на основе	ОПК ОС-1.7
применения знаний математических, естественных и	Olik OC-1./
технических наук	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ОПК ОС-1.7	Анализирует и применяет навыки выбора методов решения задач на основе теоретических знаний, применяет основные математические методы, необходимые для анализа процессов при поиске оптимальных решений	Знать методики освоения программных средств, применяемых для решения практических задач, связанных с разработкой алгоритмов, основанных на вычислительной математике Уметь применять программные средства для решения практических задач профессиональной деятельности средствами вычислительной математики Владеть навыками освоения и использования программных средств для решения практических задач, связанных с разработкой и тестированием алгоритмов, основанных на численных методах

2 Место дисциплины в структуре ООП

Изучение дисциплины «Вычислительная математика» базируется на результатах освоения следующих дисциплин/практик: «Информатика», «Математика»

Дисциплина является предшествующей для дисциплин/практик: «Основы проектной деятельности», «Производственная практика: преддипломная практика», «Проектная деятельность»

3 Объем дисциплины

Объем дисциплины составляет – 3 ЗЕТ

Вид учебной работы	Трудоемкость в академических часах (Один академический час соответствует 45 минутам астрономического часа)		
	Bcero	Семестр № 3	
Общая трудоемкость дисциплины	108	108	

Аудиторные занятия, в том числе:	64	64	
лекции	32	32	
лабораторные работы	32	32	
практические/семинарские занятия	0	0	
Самостоятельная работа (в т.ч.	44	44	
курсовое проектирование)	44	44	
Трудоемкость промежуточной	0	0	
аттестации	0	U	
Вид промежуточной аттестации			
(итогового контроля по дисциплине)	Зачет	Зачет	
	Juaci	Jager	

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр № 3

	Виды контактной работы							D.C.	_					
No	Наименование	Лек	щии	ЛР					ПЗ(СЕМ)				PC	Форма
П/П	раздела и темы дисциплины	Nº	Кол. Час.	No	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	текущего контроля				
1	2	3	4	5	6	7	8	9	10	11				
1	Особенности машинных вычислений. Погрешности вычислений	1	2	1	4			1, 4	3	Устный опрос				
2	Особенности машинных вычислений. Устойчивость и сложность алгоритмов	2	2					4	2	Устный опрос				
3	Численные методы линейной алгебры. Метод Гаусса	3	2					1, 3	3	Отчет по лаборатор ной работе				
4	Численные методы линейной алгебры. Метод итераций	4	2	3	4			3	2	Отчет по лаборатор ной работе				
5	Решение нелинейных уравнений и систем нелинейных уравнений. Метод половинного деления	5	2					3	2	Отчет по лаборатор ной работе				
6	Решение нелинейных уравнений и систем нелинейных уравнений. Метод хорд	6	2							Устный опрос				
7	Решение	7	2	2	4			1, 3	3	Отчет по				

	T					1	1		
	нелинейных								
	уравнений и								_
	систем								лаборатор
	нелинейных								ной работе
	уравнений. Метод								
	итераций								
	Интерполяция								
	функций.								
	Постановка								
	задачи								
8	интерполяции	8	2				4	2	Устный
0	функций.	0					4		опрос
	Конечные								
	разности								
	различных								
	порядков								
	Интерполяция								
	функций.								Отчет по
9	Интерполяционна	9	2				1, 3	3	лаборатор
	я формула								ной работе
	Лагранжа								_
	Интерполяция								Отчет по
10	функций. Сплайн	10	2	4	4		1, 3	3	лаборатор
	- интерполяция						, -		ной работе
	Численное								_
	интегрирование.		_	_			1, 3,	_	Отчет по
11	Квадратурные	11	2	5	4		4	5	лаборатор
	формулы								ной работе
	Численное								
	интегрирование.								
	Приближенное								Устный
12	вычисление	12	2						опрос
	несобственных								onpoc
	интегралов								
	Численные								
	методы решения								
13	обыкновенных	13	2						Устный
	ДУ. Задача Коши,	15	_						опрос
	метод Пикара.								
	Численные								
	методы решения								Отчет по
14	обыкновенных	14	2	6	6		1, 3,	5	лаборатор
14	ДУ. Методы	14		U			4]	ной работе
	Рунге - Кутта.								нои расоте
	Методы								
	методы обработки								
	оораоотки экспериментальн								Отчет по
15	_	15	2				3	2	лаборатор
13	ых данных.	15	-				٥	~	
	Метод								ной работе
	наименьших								
	квадратов.								
	Методы								
	обработки								
1.0	экспериментальн	1.0		-			1, 2,		Отчет по
16	ых данных.	16	2	7	6		3, 4	9	лаборатор
	Элементы						_		ной работе
	математической								
	статистики.								
	Промежуточная								Зачет
	аттестация		D-2						_
	Bcero		32		32			44	

4.2 Краткое содержание разделов и тем занятий

Семестр № 3

N₂	Тема	Краткое содержание
1	Особенности	Абсолютная и относительная погрешности.
	машинных вычислений.	Основные источники погрешности. Округление
	Погрешности	чисел. Погрешности результатов операций над
	вычислений	приближенными числами. Обратная задача теории
		погрешности.
2	Особенности	Устойчивость, корректность и сходимость
	машинных вычислений.	вычислительной задачи. Корректность
	Устойчивость и	вычислительных алгоритмов. Требования,
	сложность алгоритмов	предъявляемые к вычислительным алгоритмам.
3	Численные методы	Постановка задачи. Общая характеристика
	линейной алгебры.	методов решения систем линейных уравнений.
	Метод Гаусса	Нормы вектора и матрицы. Типы используемых
		матриц. Обусловленность задачи решения системы линейных алгебраических уравнений.
4	Численные методы	Метод последовательных приближений. Выбор
4	линейной алгебры.	нулевого приближения. Сходимость
	Метод итераций	итерационного процесса. Оценка числа итераций
	тистод птерации	для достижения заданной точности решения.
		Применение метода итераций.
5	Решение нелинейных	Постановка задачи. Основные этапы решения.
	уравнений и систем	Отделение корней. Оценка погрешности на n - ом
	нелинейных уравнений.	шаге решения.
	Метод половинного	
	деления	
6	Решение нелинейных	Поиск начального интервала. Условия сходимости
	уравнений и систем	процесса. Оценка точности приближения на n - ом
	нелинейных уравнений.	шаге решения.
	Метод хорд	
7	Решение нелинейных	Условия сходимости итерационного процесса.
	уравнений и систем	Геометрический смысл метода. Оценка
	нелинейных уравнений.	приближения на п - ом шаге. Метод итераций для
8	Метод итераций	системы двух уравнений.
0	Интерполяция функций. Постановка	Таблица разностей. Первая интерполяционная формула Ньютона. Вторая интерполяционная
	задачи интерполяции	формула Пьютона. Бторая интерполяционная формула Ньютона. Таблица центральных
	функций. Конечные	разностей.
	разности различных	pusitoeren.
	порядков	
9	Интерполяция	Вычисление коэффициентов Лагранжа.
	функций.	Погрешность интерполяции
	Интерполяционная	
	формула Лагранжа	
10	Интерполяция	Кусочно-полиномиальная интерполяция.
	функций. Сплайн -	Вычисление коэффициентов сплайнов третьего
	интерполяция	порядка. Ошибка интерполяции
11	Численное	Простейшие квадратурные формулы. Формула

	интегрирование.	трапеций и ее остаточный член. Формула
	Квадратурные формулы	Симпсона и ее остаточный член. Квадратурная
		формула Гаусса.
12	Численное	Приближенное вычисление несобственных
	интегрирование.	интегралов с бесконечными пределами.
	Приближенное	Приближенное вычисление несобственных
	вычисление	интегралов с бесконечным разрывом.
	несобственных	
	интегралов	
13	Численные методы	Решение дифференциального уравнения. Задача
	решения обыкновенных	Коши. Метод Пикара. Порядок точности
	ДУ. Задача Коши,	численных методов.
	метод Пикара.	
14	Численные методы	Равномерная сетка с шагом h. Метод Эйлера.
	решения обыкновенных	Методы Рунге - Кутта. Погрешности решения
	ДУ. Методы Рунге -	задачи Коши численными методами.
	Кутта.	
15	Методы обработки	Нахождение приближающей функции в виде
	экспериментальных	линейной функции и квадратного трехчлена
	данных. Метод	(линейная и квадратичная регрессия).
	наименьших квадратов.	
16	Методы обработки	Характеристики выборочной совокупности.
	экспериментальных	Точечные и интервальные оценки. Проверка
	данных. Элементы	статистических гипотез.
	математической	
	статистики.	

4.3 Перечень лабораторных работ

Семестр $N_{\mathfrak{D}}$ <u>3</u>

Nº	Наименование лабораторной работы	Кол-во академических часов
	Определение погрешностей при вычислении	
1	функций методом разложения их в степенной	4
	ряд	
	Решение нелинейных и трансцендентных	
2	уравнений методом дихотомии, методом	4
	итераций и комбинированным методом хорд и	7
	касательных	
	Решение систем линейных алгебраических	
3	уравнений методом Гаусса, методом итераций и	4
	методом Зейделя	
4	Интерполяция функций полиномами Ньютона и	4
	Лагранжа, сплайн-интерполяция	-
5	Численное интегрирование функций	4
6	Численные методы решения обыкновенных	6
0	дифференциальных уравнений	J
7	Методы обработки экспериментальных данных	6

4.4 Перечень практических занятий

4.5 Самостоятельная работа

Семестр № 3

N₂	Вид СРС	Кол-во академических часов
1	Оформление отчетов по лабораторным и практическим работам	8
2	Подготовка к зачёту	4
3	Подготовка к практическим занятиям (лабораторным работам)	20
4	Проработка разделов теоретического материала	12

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: Работа в малых группах

- 5 Перечень учебно-методического обеспечения дисциплины
- 5.1 Методические указания для обучающихся по освоению дисциплины
- 5.1.1 Методические указания для обучающихся по лабораторным работам:

Вычислительная математика https://el.istu.edu/course/view.php?id=3875

5.1.2 Методические указания для обучающихся по самостоятельной работе:

Вычислительная математика : методические указания к лабораторным и контрольным работам / Иркут. гос. техн. ун-т ; сост. Ю. П. Хрусталев. - Иркутск : Изд-во ИрГТУ, 2011. - 32 с.

- 6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине
- 6.1 Оценочные средства для проведения текущего контроля
- 6.1.1 семестр 3 | Отчет по лабораторной работе

Описание процедуры.

При защите проверяется: соответствие результатов работы предъявляемым требованиям, правильность и творческий подход к выполнению заданий, знание теоретического материала, необходимого для выполнения работ, качество и логичность написанного отчёта.

По лабораторной работе демонстрируется работоспособная программа в MS Excel (или на языке программирования высокого уровня — по согласованию с преподавателем), которая проверяется преподавателем и защищается обучающимся. Для успешной сдачи лабораторной работы студенту необходимо представить отчёт, содержащий необходимые выводы, а также защитить представленную работу. В ходе защиты студенту необходимо дать краткое изложение основных этапов выполнения лабораторной работы, устно ответить на теоретические вопросы по теме лабораторной работы, а также продемонстрировать умение ориентироваться в алгоритме и знание соответствующего математического аппарата.

Критерии оценивания.

При оценке работ ставятся следующие отметки:

- «5» если выполнено не менее 90% от всей работы.
- «4» если выполнено от 75% до 89% от всей работы.
- «3» если выполнено от 51% до 74% от всей работы, или все задания обязательного уровня.
- «2» во всех других случаях, не соответствующих вышеперечисленным.

6.1.2 семестр 3 | Устный опрос

Описание процедуры.

Устный опрос по математике предполагает ответы обучающихся с места и у доски. Преподаватель выявляет знание и понимание учебного материала, а также уровень мышления студентов: умеет ли студент обосновать своё решение, обладает ли осмысленными знаниями, владеет ли грамотной устной речью.

Критерии оценивания.

«Отлично» - учащийся полностью раскрыл содержание материала в объёме, предусмотренном программой. Он изложил материал грамотным языком, точно используя математическую терминологию и символику, в определённой логической последовательности. Учащийся правильно выполнил сопутствующие ответу рисунки, чертежи, графики. Он показал умение иллюстрировать теорию конкретными примерами, применять её в новой ситуации. Учащийся продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при ответе умений и навыков. Он отвечал самостоятельно, без наводящих вопросов преподавателя. «Хорошо» - ответ в основном соответствует требованиям на оценку «отлично», но имеет один из недочётов. Например, в изложении допущены небольшие пробелы, не исказившие математическое содержание ответа. Или допущены 1–2 недочёта при освещении основного содержания ответа, которые учащийся исправил после замечания преподавателя.

«Удовлетворительно» - содержание материала раскрыто неполно или непоследовательно, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала.

«Неудовлетворительно» - не раскрыто содержание учебного материала, учащийся обнаруживает незнание или непонимание большей, или наиболее важной части учебного материала. Допущены ошибки в определении понятия, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов преподавателя.

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
ОПК ОС-1.7	Исчерпывающе, последовательно,	Устное
	четко и логически стройно излагает	собеседование по

теоретичес	ский материал, использует в теоретическим
ответе мат	гериал научной литературы, вопросам,
свободно	справляется с задачами, не выполнение
затрудняет	гся с ответом при лабораторных
видоизмен	ении заданий, правильно работ
обосновые	вает принятое решение,
демонстри	рует разносторонние
навыки	и приемы выполнения
практичес	ких задач

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 3, Типовые оценочные средства для проведения зачета по дисциплине

6.2.2.1.1 Описание процедуры

В ходе зачета используется следующие оценочные средства: устное собеседование по теоретическим вопросам.

Студенту предлагается подготовить ответ на один из теоретических вопросов.

Преподаватель может задавать уточняющие вопросы по теме теоретического вопроса, а также по существу практического задания.

Пример задания:

- 1. Методы численного решения линейных алгебраических уравнений.
- 2. Нормы матрицы и условие сходимости процесса итераций.

6.2.2.1.2 Критерии оценивания

Зачтено	Не зачтено
Студент достаточно уверенно отвечает на	Студент не способен ответить на заданный
поставленный вопрос и дополнительные	вопрос, не способен ответить ни на один
вопросы, демонстрирует общее понимание	из дополнительных вопросов,
назначения рассматриваемых	демонстрирует полное незнание
вычислительных методов, их роль и место	теоретических и практических разделов
в практической деятельности, умение	материала, не способен показать
применять соответствующую понятийную	применение изученных методов.
базу.	

7 Основная учебная литература

- 1. Буренков С. И. Численные методы анализа : конспект лекций с решениями задач / С. И. Буренков, И. М. Сидоров, 2008. 98.
- 2. Демидович Б. П. Численные методы анализа. Приближение функций, дифференциальные и интегральные уравнения: учебное пособие / Б. П. Демидович, И. А. Марон, Э. З. Шувалова; под ред. Б. П. Демидовича, 2008. 400.
- 3. Буренков. Численные методы для инженеров [Электронный ресурс] : учебное пособие. Ч. 1, 2004. 46.

8 Дополнительная учебная литература и справочная

- 1. Заварыкин Валерий Михайлович. Численные методы : учеб. для физ.-мат. спец. ин-тов / Валерий Михайлович Заварыкин, Владимир Габриэлевич Житомирский, Михаил Павлович Лапчик, 1991. 174.
- 2. Волков Е.А. Численные методы: учеб. пособие для инженер.-техн. специальностей вузов / Е.А. Волков, 2007. 248.
- 3. Бахвалов Н. С. Численные методы : учеб. пособие для физ.-мат. специальностей вузов / Н. С. Бахвалов, Н. П. Жидков, Г. М. Кобельков, 2002. 630.

9 Ресурсы сети Интернет

- 1. http://grebennikon.ru/
- 2. https://www.iprbookshop.ru/
- 3. https://bookonlime.ru.
- 4 https://www.rsl.ru
- 5. http://csl.isc.irk.ru/
- 6. http://window.edu.ru/
- 7. http://www.computer-museum.ru/.
- 8. http://www.intuit.ru/

10 Профессиональные базы данных

- 1. http://e.lanbook.com
- 2. http://elibrary.ru
- 3. http://elib.istu.edu/

11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем

- 1. Microsoft Office Standard 2010_RUS_ поставка 2010 от ЗАО "СофтЛайн Трейд"
- 2. Microsoft Windows Seven Professional (Microsoft Windows Seven Starter) Seven, Vista, XP_prof_64, XP_prof_32 поставка 2010

12 Материально-техническое обеспечение дисциплины

- 1. Учебная аудитория для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации комплект учебной мебели, рабочее место преподавателя, доска. Мультимедийное оборудование (в том числе переносное): мультимедийный проектор, экран с электроприводом, акустическая система + ПК с выходом в Internet. Комплект мебели, доска, маркер или мел Лицензионное программное обеспечение.
- 2. Учебная аудитория для проведения лабораторных/практических (семинарских) занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Компьютерный класс от 15 до 25 компьютеров, объединенных в локальную сеть, для выполнения лабораторных работ. Мультимедийное оборудование (в том числе переносное): мультимедийный проектор, экран с электроприводом, акустическая система

- + ПК с выходом в Internet. Комплект мебели, доска, маркер или мел. Лицензионное программное обеспечение
- 3. Помещения для самостоятельной работы обучающихся