Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Структурное подразделение «Металлургии цветных металлов»

УТВЕРЖДЕНА:

на заседании кафедры металлургии цветных металлов Протокол №9 от 14 февраля 2025 г.

Рабочая программа дисциплины

«МЕТАЛЛУРГИЧЕСКАЯ ТЕПЛОТЕХНИКА»
11 20 00 00 M
Направление: 22.03.02 Металлургия
Металлургия цветных, редких и благородных металлов
Квалификация: Бакалавр
Форма обучения: очная

Документ подписан простой электронной подписью

Составитель программы: Кузьмина Марина

Юрьевна

Дата подписания: 16.05.2025

Документ подписан простой электронной подписью

Утвердил и согласовал: Немчинова Нина

Владимировна

Дата подписания: 18.05.2025

1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

1.1 Дисциплина «Металлургическая теплотехника» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции			
ПКС-2 Способность использовать основные понятия,				
законы и модели переноса тепла и массы в	ПКС-2.2, ПКС-2.3			
профессиональной деятельности				
ПКС-7 Готовность использовать физико-				
математический аппарат и проводить расчеты для	ПКС-7.1			
решения задач, возникающих в ходе	11KC-7.1			
профессиональной деятельности				

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ПКС-2.2	Использует основные понятия,	Знать – основные понятия, законы
11KC-2.2		· ·
	законы и модели	и модели термодинамики,
	термодинамики, химической	химической кинетики, тепло- и
	кинетики, тепло- и	массопереноса, необходимые для
	массопереноса для понимания	понимания теоретических основ
	теоретических основ процессов,	процессов, протекающих при работе
	протекающих при работе	тепловых агрегатов;
	тепловых агрегатов	– теоретические основы
		металлургической теплотехники,
		пути совершенствования работы
		металлургических печей, используя
		основные понятия технической
		термодинамики, теории
		тепломассообмена, механики
		жидкостей и газов;
		– основные закономерности
		процессов генерации и переноса
		теплоты, движения жидкости и
		газов применительно к
		технологическим агрегатам черной
		и цветной металлургии.
		Уметь – использовать основные
		понятия, законы и модели
		термодинамики, химической
		кинетики, тепло- и массопереноса
		для понимания теоретических основ
		процессов, протекающих при работе
		тепловых агрегатов;
		– применять основные понятия,
		законы и модели термодинамики,
		переноса тепла и массы для анализа
		работы металлургических печей;
		passizzi inciawij prin recinini ne ten,

	Г	
		– выбирать рациональные
		температурные и тепловые режимы
		работы металлургических печей.
		Владеть – основными понятиями,
		законами и моделями технической
		термодинамики, химической
		кинетики, тепло- и массопереноса,
		необходимыми для понимания
		теоретических основ процессов,
		протекающих при работе тепловых
		агрегатов.
ПКС-2.3	Применяет закономерности	Знать – применение
	технической термодинамики,	закономерностей технической
	механики жидкостей и газов,	термодинамики, механики
	тепло- и массопереноса для	жидкостей и газов, тепло- и
	анализа и расчёта тепловых	массообмена для анализа и расчёта
	процессов при производстве и	тепловых процессов при
	обработке металлов	производстве и обработке металлов;
		– основные закономерности
		процессов генерации и переноса
		теплоты, движения жидкости и
		газов, используемых для расчета
		тепловых процессов, происходящих
		в технологических агрегатах черной
		и цветной металлургии.
		Уметь – применять закономерности
		технической термодинамики,
		механики жидкостей и газов, тепло-
		и массообмена для анализа и
		расчёта тепловых процессов при
		производстве и обработке металлов;
		– правильно формулировать и
		решать разнообразные прикладные
		задачи с использованием основных
		законов термодинамики и
		тепломассообмена;
		– рассчитывать и анализировать
		процессы горения топлива и
		тепловыделения, внешнего и
		внутреннего теплообмена в печах
		различного технологического
		назначения.
		Владеть – основными
		теплотехническими расчетами,
		используя основы технической
		термодинамики и механики
		жидкостей и газов;
		– методами работы на физических
		приборах, используемых при
		выполнении лабораторных работ по
		дисциплине «Металлургическая

		теплотехника».	
		Знать – методы проектирования	
		металлургических печей;	
		– принципы работы и особенности	
		конструкции основных плавильных,	
		нагревательных и сушильных печей,	
		применяемых в чёрной и цветной	
		металлургии.	
		Уметь – использовать физико-	
		математический аппарат и знания	
		законов технической	
		термодинамики при	
		проектировании тепловых	
		металлургических агрегатов;	
		– производить расчёты	
	Использует физико-	пирометаллургической аппаратуры,	
	математический аппарат и	используя современные методы	
ПКС-7.1	знания законов технической	проектирования;	
1110 / 11	термодинамики при	– использовать справочную	
	проектировании тепловых	литературу для выполнения	
	металлургических агрегатов	расчетов;	
		– выполнять чертежи деталей и	
		элементов конструкций	
		металлургических печей.	
		Владеть – основными	
		металлургическими и	
		теплотехническими расчетами,	
		используя физико-математический	
		аппарат, основы технической	
		термодинамики и механики	
		жидкостей и газов;	
		– выполнять чертежи деталей и	
		элементов конструкций	
		металлургических печей и другого	
		металлургического оборудования.	

2 Место дисциплины в структуре ООП

Изучение дисциплины «Металлургическая теплотехника» базируется на результатах освоения следующих дисциплин/практик: «Физика», «Химия», «Математика», «Инженерная и компьютерная графика»

Дисциплина является предшествующей для дисциплин/практик: «Теория пирометаллургических процессов», «Металлургия редких металлов», «Металлургия тяжелых цветных металлов»

3 Объем дисциплины

Объем дисциплины составляет – 5 ЗЕТ

Вид учебной работы	Трудоемкость в академических часах
	(Один академический час соответствует 45 минутам
	астрономического часа)

	Всего	Семес тр № 3	Семестр № 4
Общая трудоемкость дисциплины	180	108	72
Аудиторные занятия, в том числе:	80	32	48
лекции	32	16	16
лабораторные работы	16	0	16
практические/семинарские занятия	32	16	16
Контактная работа, в том числе	0	0	0
в форме работы в электронной информационной образовательной среде	0	0	0
Самостоятельная работа (в т.ч. курсовое проектирование)	64	40	24
Трудоемкость промежуточной аттестации	36	36	0
Вид промежуточной аттестации (итогового контроля по дисциплине)	Зачет, Курсовой проект, Экзамен	Экзам ен	Зачет, Курсовой проект

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр $N_{\mathfrak{D}}$ <u>3</u>

	TT	Виды контактной работы					D.C.	Форма		
N₂	Наименование			IP ПЗ(СЕМ)		CPC				
п/п	раздела и темы дисциплины	Nº	Кол. Час.	N₂	Кол. Час.	Nº	Кол. Час.	N₂	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Введение. Основы металлургической теплотехники	1	2					2	10	Реферат
2	Раздел 1. Тепловые процессы при производстве и обработке металлов и применение закономерностей технической термодинамики, химической кинетики, механики жидкостей и газов тепло- и	2	2					4	5	Доклад

	массообмена для								
	их анализа и								
	расчёта.								
	Раздел 2. Топливо								
3	и его сжигание. Тема 2.1	3	4		1, 2	12	1, 3, 3	9	Тест
	Теплогенерация						ی		
	Раздел 2. Топливо								
4	и его сжигание. Тема 2.2 Сжигание	4	2		3, 4	4	3, 3,	10	Решение
	топлива в пламенных печах						0		задач
	Раздел 3.								
5	Огнеупорные и теплоизоляционн ые материалы Тема 3.1 Огнеупорные	5	2				5	2	Устный опрос
	материалы								
6	Раздел 3. Огнеупорные и теплоизоляционн ые материалы. Тема 3.2 Теплоизоляционн ые материалы	6	2				5	2	Устный опрос
7	Раздел 4. Устройства для использования вторичных энергоресурсов.	7	2				5	2	Устный опрос
	Промежуточная аттестация							36	Экзамен
	Всего		16			16		76	

Семестр № 4

	Harrisanana	Виды контактной работы						PC	Форуга	
No	№ Наименование		Лекции		ЛР		ПЗ(СЕМ)		PC	Форма
п/п	раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	N₂	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Раздел 5. Проектирование печей цветной металлургии.	1	2			1, 2, 3, 4	16	1, 3, 3, 3, 3, 5	16	Решение задач
2	Раздел 6. Конструкции печей, используемых, в основных переделах чёрной и цветной металлургии	2	10	1, 2, 3	10			4, 4, 4	3	Отчет по лаборатор ной работе
3	Раздел 7. Основы пирометаллургич еского производства	3	4	4, 5	6			2, 4,	5	Отчет по лаборатор ной работе
	Промежуточная аттестация									Зачет, Курсовой

					проект
Всего	16	16	16	24	

4.2 Краткое содержание разделов и тем занятий

Семестр № $\underline{3}$

Nº	Тема	Краткое содержание
1	Введение. Основы	Теплотехника – научная дисциплина и отрасль
	металлургической	техники, охватывающая методы получения
	теплотехники	теплоты, преобразования её в другие виды
		энергии, распределения, транспортирования,
		использования теплоты с помощью тепловых
		машин, аппаратов и устройств. Производство
		чёрных и цветных металлов, лежащее в основе
		развития современной техники, связано с
		протеканием высокотемпературных, весьма
		энергоёмких процессов. Развитие металлургии в
		целом, а также развитие различных её переделов
		всегда связано с совершенствованием
		существующих или внедрением новых
		теплотехнических процессов. Металлургическая
		(печная) теплотехника оформилась в
		самостоятельное направление технической
		физики, использующее, дополняющее и
		развивающее положения таких фундаментальных
		разделов науки, как термодинамика, гидро- и
		аэродинамика, теория горения, тепло- и
		массоперенос. Необходимость непрерывного
		совершенствования конструкций печей и
		процессов, в них происходящих, потребовала
		формулирования общих научных принципов,
		лежащих в основе печных процессов. В
		современном понимании печь – это тепловой
		агрегат, в котором происходит получение теплоты
		из того или иного вида энергии и передача её
		материалу, подвергаемому обработке. Таким
		образом, печи представляют собой
		технологический аппарат и энергетическое
_		устройство одновременно.
2	Раздел 1. Тепловые	Пути развития металлургической теплотехники
	процессы при	достаточно разнообразны. Развитие теоретических
	производстве и	основ определяется необходимостью выделения
	обработке металлов и	главных теплофизических процессов в рабочем
	применение	пространстве конкретных печных агрегатов,
	закономерностей	составления соответствующих этим процессам
	технической	математических моделей с последующим их
	термодинамики,	использованием для совершенствования
	химической кинетики,	конструкции и работы печей. В практическом
	механики жидкостей и	плане совершенствование конструкций печных
	газов тепло- и	агрегатов и методов их эксплуатации должно
	массообмена для их	происходить в направлении создания

	анализа и расчёта.	высокопроизводительных металлургических
		печей, отвечающих требованиям современного
		поточного производства с непрерывным
		снижением энергоёмкости процессов плавления и
		нагрева, осуществляемых в этих агрегатах.
		Техническая термодинамика изучает процессы
		взаимного превращения тепловой и механической
		энергии, происходящие в тепловых двигателях и
		различных технических устройствах, к которым
		относят металлургические печи. Рассматриваются
		следующие вопросы: техническая термодинамика;
		основные процессы, протекающие при работе
		тепловых агрегатов; механика жидкостей и газов;
		основы тепло- и массообмена.
3	Раздел 2. Топливо и его	Топливом называются горючие вещества,
	сжигание. Тема 2.1	служащие источником тепла. Топливо должно
	Теплогенерация	отвечать следующим требованиям: запасы его
		велики и доступны для добычи; продукты
		сгорания легко транспортируются из зоны горения
		и безвредны для окружающей среды; топливо
		легко загорается и содержит небольшое
		количество негорючих примесей (воды и золы);
		процесс горения легко управляем. По
		происхождению топливо подразделяется на
		естественное и искусственное. Последнее является
		продуктом переработки естественного топлива. По
		агрегатному состоянию топливо делится на
		твердое (кусковое, пылевидное), жидкое и
		газообразное. Агрегатное состояние топлива
		определяет способы его хранения,
		транспортировки и сжигания. Топливо, сжигаемое
		в промышленных печах, называется рабочим
		топливом. Горючими органическими элементами
		рабочего топлива является: углерод, водород и
		летучая сера. Кроме горючих элементов рабочее
		топливо содержит негорючие органические
		элементы – кислород и азот, входящие в состав
		топлива в виде сложных высокомолекулярных
		соединений, а также негорючие минеральные
		примеси, образующие после сгорания топлива
		золу и влагу. Если отобрать пробу твердого или
		жидкого рабочего топлива и исследовать ее в
		химической лаборатории, определив
		элементарный химический состав, то можно
		определить состав топлива по рабочей массе.
4	Раздел 2. Топливо и его	В пламенных печах при сжигании газообразного
	сжигание. Тема 2.2	или жидкого топлива образуется пламя (факел), в
	Сжигание топлива в	котором протекают и завершаются процессы
	пламенных печах	сгорания горючих компонентов топлива. В
		пламени происходит выделение тепла, которое
		распространяется по печному пространству.
-		

		Теплоотдача от пламени определяется в основном
		теплоотдающими характеристиками и условиями,
		в которых происходит процесс передачи тепла.
		Пламя является важнейшим, но лишь одним из
		компонентов теплообмена и рабочем пространстве
		печей. Наряду с пламенем в состоянии взаимного
		теплообмена находятся нагреваемый материал,
		футеровка и различные элементы печи. Все они
		имеют соответствующие температуру и
		теплообменные характеристики. Пламя должно
		отвечать следующим основным требованиям:
		иметь максимально необходимую для данного
		1
		типа печи температуру; иметь целесообразное
		распределение температуры по объему печи и
		обеспечивать наивысший уровень теплоотдачи
		излучением и конвекцией; в необходимых случаях
		должно обеспечивать должное развитие
		массообменных процессов; влияние факельных
		струй на характер движения газов в печах должно
		быть позитивным – способствуя выравниванию
		температуры и развитию процессов конвективного
		теплообмена, факельные струи не должны
		разрушать элементов печи и не должны приводить
		к подсосу холодного воздуха в печь и чрезмерному
_	7 2 2	выбиванию раскаленных газов.
5	Раздел 3. Огнеупорные	Огнеупорами называют материалы, изготовляемые
	и теплоизоляционные	на основе минерального сырья и отличающиеся
	материалы Тема 3.1	способностью сохранять без существенных
	Огнеупорные	нарушений свои функциональные свойства в
	материалы	разнообразных условиях службы при высоких
		температурах. Интенсификация всех процессов,
		протекающих при высоких температурах, требует
		повышения рабочих свойств огнеупорных
		изделий. Металлургическое производство
		потребляет основное количество огнеупоров (60–
		70 %). Огнеупорные материалы широко
		используют также в стекольной, цементной,
		атомной промышленностях и в ракетостроении.
		Качество применяемых в промышленности
		огнеупоров влияет на производительность
		агрегатов, на качество готовой продукции и на
		стоимость единицы продукции. В производстве
		при применении огнеупоров главной задачей
		является соответствие их свойств условиям
		службы при обязательном требовании, чтобы их
		стоимость была экономически приемлемой.
		Применяемые в промышленности огнеупоры делят
		на изделия, которым и изготовлении придается
		определенная форма (кирпичи, фасонные изделия,
		крупные блоки) и неформованные материалы (бетоны, торкрет-массы, мертели). В основу
1		

		1 0
		классификации огнеупорных изделий положено шесть основных признаков: химико-минеральный состав; огнеупорность; пористость; способ формования; термическая обработка; форма и размеры.
6	Раздел 3. Огнеупорные и теплоизоляционные материалы. Тема 3.2 Теплоизоляционные материалы	Назначение теплоизоляционных материалов — снизить тепловые потери и обеспечить экономию топлива или электроэнергии, сократить время на разогрев печи после ремонта, следовательно, повысить производительность и снизить стоимость единицы продукции. Теплоизоляционные материалы делят по ряду признаков на следующие группы: 1. По огнеупорности — на огнеупорные, выдерживающие рабочую температуру 800 °С, и неогнеупорные, которые могут быть использованы только при температурах ниже 800 °С; 2. По происхождению — на естественные и искусственные; 3. По форме и способу применения — теплоизоляционные материалы выполняются в виде изделий (кирпичей, листов) или в виде неформованных материалов (засыпки, ваты, волокон). Для теплоизоляционных материалов характерны низкие механическая прочность и шлакоустойчивость. В связи с этим теплоизолирующий слой кладки не следует подвергать нагрузке или допускать контакта его с жидкими средами (металлом или шлаком). Учитывая сравнительно низкие свойства теплоизолирующих материалов, тепловую изоляцию обычно выполняют наружным слоем футеровки.
7	Раздел 4. Устройства для использования вторичных энергоресурсов.	Подавляющее большинство процессов, протекающих в металлургических печах, совершается при высоких температурах и связано с большими затратами тепловой энергии. Высокая энергоёмкость печных процессов делает металлургическую теплотехнику ответственной за энергетические показатели работы печей, на долю которых приходится очень большая часть энергии, расходуемой как в России, так и во всём мире в целом. Поэтому металлургическая теплотехника изучает не только теплофизические процессы, лежащие в основе работы металлургических печных агрегатов, но и вопросы, сопутствующие работе этих агрегатов, такие как использование вторичных энергоресурсов, охрана окружающей среды и другие. Рассматриваются вопросы: утилизация тепла отходящих дымовых газов; утилизация тепла готового продукта и шлака;

Семестр № 4

No	Тема	Краткое содержание
1	Раздел 5.	Проектирование печей проводят на основе
	Проектирование печей	капитальных исследований конструкции и
	цветной металлургии.	режимов их работы, выполненных в
		промышленном или полупромышленном
		масштабе. Печи обычно проектируют в две стадии:
		технический проект; рабочие чертежи.
		Технический проект состоит из подробного
		технологического и теплового расчёта самой печи,
		её деталей и всего вспомогательного
		оборудования. Кроме чертежей общего вида печи,
		составляют чертежи некоторых важнейших её
		узлов (электродное устройство, горелки,
		футеровка, охлаждаемые детали). Рабочие чертежи
		печи представляют собой деталировку во всех
		мельчайших подробностях технического проекта.
		Изготовление печных деталей, строительство и
		монтаж печи осуществляют по рабочим чертежам.
		Расчётно-пояснительную записку к проекту печи
		составляют по следующему плану: задание на
		расчёт печи; расчёт технологического процесса;
		расчёт топлива или электроэнергии; определение
		основных размеров печи; составление
		материального и теплового балансов печи; расчёт
		газоотводящей системы; расчёт деталей печи и
		вспомогательного оборудования; конструктивные
		расчёты; мероприятия и правила техники
		безопасности; составление схемы контроля и
		автоматизации; составление спецификации
		оборудования; технико-экономические расчёты;
		перечень использованной литературы и
2	Danier C. Marremarrier	материалов.
2	Раздел 6. Конструкции печей, используемых, в	Металлургическая печь – тепловой агрегат, в
		котором происходит получение теплоты из того
	основных переделах чёрной и цветной	или иного вида энергии и передача её материалу, подвергаемому обработке. Рассматриваются
	_	
	металлургии	следующие вопросы: основные положения тепловой работы печей; строительные элементы
		печей (фундамент; каркас; кладка); печи чёрной
		металлургии (топливные печи чёрной
		металлургии (топливные печи черной металлургии; печи чёрной металлургии с
		теплогенерацией за счёт выгорания примесей
		металла; электрические печи, применяемые в
		чёрной металлургии); печи цветной металлургии
		(топливные печи цветной металлургии; печи
		цветной металлургии с полным или частичным
		использованием химической энергии сырьевых
		материалов; электрические печи, применяемые в
		marepranos, suckipuseckie nesii, npimeniemble B

		цветной металлургии); очистка дымовых газов.
3	Раздел 7. Основы	В основе пирометаллургических методов
	пирометаллургического	получения металлов лежат физико-химические
	производства	превращения металлосодержащих материалов,
		позволяющие осуществить извлечение,
		рафинирование и тепловую обработку металлов.
		Подавляющее большинство этих превращений
		происходит с поглощением теплоты, а их скорость
		определяется температурой процесса. Все
		пирометаллургические процессы осуществляют в
		металлургических печах – устройствах, в которых
		в результате горения топлива или преобразования
		электроэнергии выделяется теплота, используемая
		для тепловой обработки материалов или изделий.
		Печи представляют собой технологический
		аппарат и энергетическое устройство
		одновременно. По технологическому назначению
		металлургические печи делят на плавильные и
		нагревательные. Тепловыделение в печах
		представляет собой процесс превращения какого-
		либо вида энергии в тепловую энергию.
		Источниками получения тепла являются:
		химическая энергия топлива (топливные печи);
		химическая энергия жидкого металла или шихты;
		электрическая энергия. Рассматриваются вопросы:
		металлургические печи в технологическом
		понимании; современные пирометаллургические
		процессы; подготовка сырья к
		пирометаллургической переработке; обжиг;
		плавка.

4.3 Перечень лабораторных работ

Семестр № $\underline{4}$

Nº	Наименование лабораторной работы	Кол-во академических часов
1	Технический анализ топлива. Определение содержания влаги в твердом топливе	4
2	Технический анализ топлива. Определение выхода летучих веществ твердого топлива	2
3	Технический анализ топлива. Определение зольности и теплоты сгорания твердого топлива	4
4	Определение пористости, водопоглощения и объемной массы огнеупорных изделий	2
5	Определение термостойкости огнеупоров	4

4.4 Перечень практических занятий

Семестр № 3

No	Темы практических (семинарских) занятий	Кол-во академических

		часов
1	Характеристика твердых, жидких и газообразных топлив	4
2	Расчёт горения топлива	8
3	Состав топлива. Решение инженерных задач	2
4	Характеристики топлива. Зольность, влажность и сернистость топлива. Решение инженерных задач	2

Семестр № 4

Nº	Темы практических (семинарских) занятий	Кол-во академических часов
1	Характеристики топлива. Теплота сгорания топлива. Решение инженерных задач	2
2	Расчёт системы газохода металлургической печи	8
3	Принцип действия и расчёт дымовой трубы металлургической печи	2
4	Расчёт крепления арочного свода плавильной печи	4

4.5 Самостоятельная работа

Семестр № 3

Nº	Вид СРС	Кол-во академических часов
1	Выполнение тренировочных и обучающих тестов	5
2	Написание реферата	10
3	Подготовка к практическим занятиям	8
4	Подготовка презентаций	5
5	Проработка разделов теоретического материала	6
6	Решение специальных задач	6

Семестр № 4

No	Вид СРС	Кол-во академических часов
1	Написание курсового проекта (работы)	10
2	Подготовка к зачёту	3
3	Подготовка к практическим занятиям	4
4	Подготовка к практическим занятиям (лабораторным работам)	5
5	Решение специальных задач	2

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: В ходе проведения практических занятий и лабораторных работ по курсу "Металлургическая теплотехника" используются следующие интерактивные методы обучения: разбор конкретных ситуаций; групповые дискуссии. Лекционные и практические занятия по дисциплине проводятся с использованием слайд-материалов.

- 5 Перечень учебно-методического обеспечения дисциплины
- 5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по курсовому проектированию/работе:

- 1. Металлургическая теплотехника [Электронный ресурс] : метод. указания по выполнению курсового проекта / сост. : М.Ю. Кузьмина. Иркутск : Изд-во ИРНИТУ, 2018. 58 с.
- 2. Кузьмина М.Ю. Теплотехника: программа и метод. указания к выполнению курсового проекта. Иркутск: Изд-во ИрГТУ, 2005. 76 с.

5.1.2 Методические указания для обучающихся по практическим занятиям

Металлургическая теплотехника [Электронный ресурс] : метод. указания по проведению практических занятий / сост. М.Ю. Кузьмина. – Иркутск : Изд-во ИРНИТУ, 2018. – 51 с.

5.1.3 Методические указания для обучающихся по лабораторным работам:

Металлургическая теплотехника [Электронный ресурс] : метод. указания по выполнению лабораторных работ / сост. : М.Ю. Кузьмина. – Иркутск : Изд-во ИРНИТУ, 2018. – 29 с.

5.1.4 Методические указания для обучающихся по самостоятельной работе:

Металлургическая теплотехника [Электронный ресурс] : метод. указания по самостоятельной работе обучающихся / сост. : М.Ю. Кузьмина. – Иркутск : Изд-во ИРНИТУ, 2018. – 39 с.

- 6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине
- 6.1 Оценочные средства для проведения текущего контроля

6.1.1 семестр 3 | Реферат

Описание процедуры.

Данный вид самостоятельной работы предполагает индивидуальное самостоятельное выполнение письменной работы (реферата) по предложенной тематике с использованием перечня рекомендуемой литературы и информационных ресурсов. В начале семестра обучающийся выбирает одну из предложенных тем для написания реферата (согласно порядковому номеру в списке группы). После самостоятельного изучения рекомендуемой литературы на последней неделе семестра обучающийся должен предоставить преподавателю отчетный документ по данному виду самостоятельной работы в виде реферата. Текст реферата должен быть выполнен с помощью ПК, на листах белой бумаги формата А4. Правила оформления работы стандартны и приведены в СТО. Необходимо подготовить презентацию по теме реферата (15–20 слайдов). Вопросы для контроля:

Примерная тематика рефератов:

- 1. Термодинамика газового потока. Первый закон термодинамики для газового потока.
- 2. Роль газов в металлургической теплотехнике.
- 3. Дымовые трубы и дымососы. Принцип действия дымовой трубы.
- 4. Нагрев металла. Характеристики процесса нагрева металла и его протекание.

- 5. Основы теории теплообмена.
- 6. Основы теории массообмена.
- 7. Характеристика металлургического топлива.
- 8. Теплофизические основы преобразования электрической энергии в тепловую.
- 9. Пламя и его значение в тепловой работе печей. Требования к пламени.
- 10. Сжигание газообразного топлива.
- 11. Сжигание жидкого топлива.
- 12. Особенности сжигания твёрдого топлива.
- 13. Огнеупоры. Классификация огнеупорных изделий. Свойства огнеупорных материалов.
- 14. Теплоизоляционные материалы, используемые в металлургии.
- 15. Служба огнеупоров и футеровки металлургических печей. Характеристика службы огнеупоров.
- 16. Выбор огнеупоров для футеровки печей. Футеровка плавильных печей.
- 17. Выбор огнеупоров для футеровки печей. Футеровка нагревательных печей.
- 18. Токсичность продуктов сгорания. Воздействие токсичных веществ на человека и окружающую среду.
- 19. Утилизация тепла отходящих дымовых газов
- 20. Основные положения общей теории печей М.А. Глинкова.
- 21. Топливные печи чёрной металлургии.
- 22. Печи чёрной металлургии с теплогенерацией за счёт выгорания примесей металла.
- 23. Электрические печи, применяемые в чёрной металлургии.
- 24. Топливные печи цветной металлургии.
- 25. Электрические печи, применяемые в цветной металлургии.
- 26. Печи цветной металлургии с полным или частичным использованием химической энергии сырьевых материалов.
- 27. Строительные элементы и механическое оборудование металлургических печей. Рекомендуемая литература по каждой теме реферата представлена в методических указаниях по самостоятельной работе обучающихся. Для более глубокого изучения выбранной темы реферата, обучающимся необходимо работать с несколькими учебниками, указанными в списке рекомендуемой литературы.

Критерии оценивания.

Полнота раскрытия темы, предлагаемой для написания реферата; перечень используемых источников и уровень компилятивности по тематике; качество оформления.

6.1.2 семестр 3 | Тест

Описание процедуры.

При подготовке к тестированию самостоятельно изучить теоретический материал с помощью основной и дополнительной литературы и информационных ресурсов и прочитать конспект лекционного материала.

Критерии оценивания.

Тест считается успешно пройденным при правильных ответах на вопросы теста более 50 %.

6.1.3 семестр 3 | Решение задач

Описание процедуры.

Цель: решить практические вопросы и задачи по изучаемой теме.

Пример задачи (Раздел 2. Топливо и его сжигание. Тема 2.2 Сжигание топлива в пламенных печах):

Определить состав горючей массы кизеловского угля марки Γ , если состав его рабочей массы:

C = 48,5 %; H = 3,6 %; S = 6,1 %; N = 0,8 %; O = 4,0 %; зольность сухой массы A = 33,0 % и влажность рабочая W = 6,0 %.

Пример задачи (Раздел 5. Проектирование печей цветной металлургии):

Определить низшую и высшую теплоту сгорания рабочей массы челябинского угля марки Б3, если состав топлива по рабочей массе составляет: C = 37,3 %; H = 2,8 %; S = 1,0 %; N = 0,9 %; O = 10,5 %; O = 10,

Критерии оценивания.

Полнота раскрытия вопросов, качество выполненных заданий (качество оформления, правильность выполненных расчетов).

6.1.4 семестр 3 | Устный опрос

Описание процедуры.

В методических указаниях по самостоятельной работе обучающихся приведены темы для самостоятельного изучения разделов курса и рекомендуемая литература. Изучать материал рекомендуется по главам учебника (учебного пособия). Преподаватель на занятиях проводит устный опрос (выборочно из обучающихся).

Вопросы для контроля (на примере раздела 3. Огнеупорные и теплоизоляционные материалы, темы 3.1 Огнеупорные материалы):

- 1. Какие основные огнеупорные материалы используются в печестроении?
- 2. Классификация огнеупорных материалов.
- 3. Привести промышленную классификацию огнеупорных изделий.
- 3. Перечислить основные свойства огнеупорных материалов.
- 4. Какие основные требования предъявляются к огнеупорам, используемым для футеровки металлургических печей?
- 5. Как осуществляется выбор огнеупоров для футеровки печей?
- 6. Назвать основные огнеупорные изделия.
- 7. Назвать основные неформованные огнеупорные материалы.
- 8. Назвать основные теплоизоляционные материалы.
- 9. Какие строительные материалы и металлы применяются в печестроении?
- 10. Каковы особенности футеровки плавильных и нагревательных печей?

Критерии оценивания.

Активное участие обучающегося в устном опросе.

6.1.5 семестр 3 | Доклад

Описание процедуры.

Целью подготовки к докладу (по выполненной презентации) является проработка отдельного раздела теоретического курса. Обучающийся готовят презентацию по выбранной тематике реферата (согласно варианту из списка группы). Презентация – не более 5 мин, количество слайдов – 15–20.

Критерии оценивания.

Полнота раскрытия вопроса, качество выполненной презентации (оформление, информативность), ответы на вопросы аудитории при докладе.

6.1.6 семестр 4 | Решение задач

Описание процедуры.

Цель: решить практические вопросы и задачи по изучаемой теме.

Пример задачи (Раздел 2. Топливо и его сжигание. Тема 2.2 Сжигание топлива в пламенных печах):

Определить состав горючей массы кизеловского угля марки Γ , если состав его рабочей массы:

C = 48,5 %; H = 3,6 %; S = 6,1 %; N = 0,8 %; O = 4,0 %; зольность сухой массы A = 33,0 % и влажность рабочая W = 6,0 %.

Пример задачи (Раздел 5. Проектирование печей цветной металлургии):

Определить низшую и высшую теплоту сгорания рабочей массы челябинского угля марки Б3, если состав топлива по рабочей массе составляет: C = 37,3 %; H = 2,8 %; S = 1,0 %; N = 0,9 %; O = 10,5 %

Критерии оценивания.

Полнота раскрытия вопросов, качество выполненных заданий (качество оформления, правильность выполненных расчетов).

6.1.7 семестр 4 | Отчет по лабораторной работе

Описание процедуры.

Перед проведением лабораторных работ все обучающиеся обязаны ознакомиться с правилами охраны труда и строго их выполнять. К выполнению лабораторных работ допускаются обучающиеся, прослушавшие инструктаж по технике безопасности и сделавшие соответствующую запись в журнале по ТБ в аудитории, предназначенной для проведения лабораторных работ по данной дисциплине.

- 1. Задание на выполнение лабораторной работы обучающийся получает на предыдущем занятии. При подготовке к лабораторной работе обучающийся обязан ознакомиться с её содержанием, повторить или изучить теоретический материал, относящийся к работе, используя рекомендуемую литературу, понять цель и задачи работы.
- 2. К началу занятий должен быть подготовлен шаблон отчета по лабораторной работе, в который необходимо включить расчётные формулы и таблицы для наблюдений.
- 3. Отчет оформляется для каждой лабораторной работы. Отчёт должен содержать название работы, изложение цели и задач работы, краткое теоретическое введение, схему установки и краткое описание методики проведения работы, таблицу с опытными и расчётными данными; графики (там, где это требуется), справочные данные, выводы по работе. Отчёты по лабораторным работам оформляются в соответствии с требованиями методических указаний по выполнению лабораторных работ и требованиями СТО 027—2021. Система менеджмента качества. Учебно-методическая деятельность. Общие требования к организации и проведению лабораторных работ. 17 с.
- 4. На следующем занятии отчёт предоставляется преподавателю для проверки. При защите отчёта проверяется знание теоретического материала соответствующих разделов курса и вопросов методики, связанной с выполнением работы.

Вопросы для контроля (на примере лабораторной работы "Определение термостойкости

огнеупоров"):

- 1. Описать физические и рабочие свойства материалов, с которыми были ознакомлены в лаборатории.
- 2. Что понимают под строительной прочностью огнеупорных материалов?
- 3. Как определяется огнеупорность материалов?
- 4. Огнеупорные материалы. Классификация огнеупорных изделий.
- 5. Свойства огнеупорных материалов.
- 6. Огнеупорные изделия.
- 7. Неформованные огнеупорные материалы.
- 8. Теплоизоляционные материалы.
- 9. Строительные материалы и металлы, применяемые в печестроении.
- 10. Перечислить элементы футеровки промышленных печей.

Критерии оценивания.

Правильность оформления отчетов и полнота ответов на вопросы по контрольным вопросам, приведенным к каждой лабораторной работе в методических указаниях. Подробное описание лабораторной работы и вопросы к защите отчета представлены в методических указаниях по выполнению лабораторных работ.

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
ПКС-2.2	Демонстрирует способность	Устное
	использовать основные понятия, законы и модели термодинамики,	собеседование по вопросам
	химической кинетики, тепло- и	экзаменационного
	массопереноса для понимания	билета.
	теоретических основ процессов,	
	протекающих при работе	
	металлургических тепловых агрегатов;	
	умеет тесно увязывать теоретические	
	вопросы металлургической	
	теплотехники с прикладными	
	задачами, используя знания основных	
	законов термодинамики, химической кинетики, тепло- и массопереноса.	
ПКС-2.3	Умеет применять закономерности	Устное
	технической термодинамики,	собеседование по
	механики жидкостей и газов, тепло- и	вопросам к зачёту
	массопереноса для анализа и расчёта	и в виде
	тепловых процессов при производстве	тестирования.
	и обработке металлов. Свободно	
	справляется с задачами, вопросами и	
	другими видами применения знаний.	

ПКС-7.1	Способен выполнять расчетные	Выполнение и
	элементы проекта, используя физико-	устное
	математический аппарат, знания	собеседование по
	законов технической термодинамики,	вопросам к
	а также конструкций и принципа	защите курсового
	работы оборудования	проекта.
	пирометаллургических цехов, с	
	подробным описанием конструкции и	
	принципа работы проектируемой печи,	
	теплового и температурного режимов	
	работы печей.	

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 3, Типовые оценочные средства для проведения экзамена по дисциплине

6.2.2.1.1 Описание процедуры

Экзамен (семестр 3) проводится в виде устного собеседования по вопросам экзаменационного билета.

Пример задания:

Вопросы к экзамену по дисциплине:

- 1. Теплотехника как раздел общеинженерных наук. Роль и значение теплотехники в развитии экономики и промышленности России.
- 2. Основные понятия технической термодинамики. Термодинамическая система. Параметры состояния и внутренняя энергия. Теплота и работа. Идеальный газ. Удельная теплоёмкость.
- 3. Формулировки первого закона термодинамики. Формулировки второго закона термодинамики.
- 4. Основные понятия теории тепломассообмена. Виды процессов тепло- и массообмена.
- 5. Назвать области применения понятий, законов и моделей термодинамики, химической кинетики, тепло- и массопереноса в контексте понимания химических и металлургических процессов.
- 6. Топливо и его горение. Общая характеристика топлива. Классификация топлива. Состав топлива.
- 7. Теплота сгорания топлива. Температура горения. Топливо, применяемое в металлургии.
- 8. Расчёт горения топлива
- 9. Технический анализ твёрдого и жидкого топлива.
- 10. Огнеупорные материалы. Классификация огнеупорных изделий.
- 11. Свойства огнеупорных материалов.

6.2.2.1.2 Критерии оценивания

Отлично	Хорошо	Удовлетворительн о	Неудовлетворительно
Демонстрирует	Демонстрирует	Демонстрирует	Не способен
способность	способность	низкую способность	использовать основные
использовать	использовать	использовать	понятия, законы и
основные понятия,	основные понятия,	основные понятия,	модели

законы и модели термодинамики, химической кинетики, тепло- и массопереноса для понимания теоретических основ процессов, протекающих при работе металлургических тепловых агрегатов; умеет тесно увязывать теоретические вопросы металлургической теплотехники с прикладными задачами, используя знания основных законов термодинамики, химической кинетики, тепло- и массопереноса.

законы и модели термодинамики, химической кинетики, тепло- и массопереноса для понимания теоретических основ процессов, протекающих при работе металлургических тепловых агрегатов, но не в полной мере; умеет увязывать теоретические вопросы металлургической теплотехники с прикладными задачами, используя знания основных законов термодинамики, химической кинетики, тепло- и массопереноса, но не всегда обоснованно.

законы и модели термодинамики, химической кинетики, тепло- и массопереноса для понимания теоретических основ процессов, протекающих при работе металлургических тепловых агрегатов,. Демонстрирует низкую способность увязывать теоретические вопросы металлургической теплотехники с прикладными задачами, используя знания основных законов термодинамики, химической кинетики, тепло- и массопереноса.

термодинамики, химической кинетики, тепло- и массопереноса для понимания теоретических основ процессов, протекающих при работе металлургических тепловых агрегатов. Не умеет тесно увязывать теоретические вопросы металлургической теплотехники с прикладными задачами, используя знания основных законов термодинамики, химической кинетики, тепло- и массопереноса.

6.2.2.2 Семестр 4, Типовые оценочные средства для проведения зачета по дисциплине

6.2.2.2.1 Описание процедуры

Зачет (семестр 4) проводится в виде тестирования по разделу курса и устного собеседования по вопросам, предназначенным к зачёту.

Пример задания:

Перечень вопросов к зачету (семестр 4):

- 1. Расчёт системы газохода металлургической печи
- 2. Принцип действия дымовой трубы. Расчет дымовой трубы.
- 3. Классификация металлургических печей по принципу теплогенерации, по технологическому назначению и конструктивным признакам.
- 4. Основные положения общей теории печей М.А. Глинкова.
- 5. Определение обжига, его назначение и виды в цветной металлургии. Сравнение окислительного и сульфатизирующего обжига. Обжиговые печи цветной металлургии.
- 6. Печи для обжига сульфидных концентратов в кипящем слое: общая характеристика и принцип работы; аэродинамический режим работы печей; тепловой и температурный

режимы процесса; конструкция печей.

- 7. Трубчатые вращающиеся печи: основные характеристики и конструкции печей; тепловой и температурный режим работы.
- 8. Виды обжиговых печей и их основные технологические показатели. Применение хлорирующего и восстановительного обжига в пирометаллургии.
- 9. Плавильные пламенные печи цветной металлургии общие сведения. Отражательные печи для плавки медных концентратов на штейн. Печи для рафинирования меди.
- 10. Электрические печи, применяемые в цветной металлургии.

6.2.2.2 Критерии оценивания

Зачтено	Не зачтено	
Умеет применять закономерности	Не умеет применять закономерности	
технической термодинамики, механики	технической термодинамики, механики	
жидкостей и газов, тепло- и массопереноса	жидкостей и газов, тепло- и массопереноса	
для анализа и расчёта тепловых процессов	для анализа и расчёта тепловых процессов	
при производстве и обработке металлов.	при производстве и обработке металлов.	
Свободно справляется с задачами,	Не справляется с задачами, вопросами и	
вопросами и другими видами применения	другими видами применения знаний.	
знаний.		

6.2.2.3 Семестр 4, Типовые оценочные средства для курсовой работы/курсового проектирования по дисциплине

6.2.2.3.1 Описание процедуры

Выполнение курсового проекта и устное собеседование по вопросам к защите курсового проекта.

Пример задания:

Перечень вопросов к защите курсового проекта (семестр 4):

- 1. Классификация металлургических печей. Процессы теплогенерации и режимы работы печей.
- 2. Печи чёрной металлургии: топливные печи; печи с теплогенерацией за счёт выгорания примесей металла; электрические печи.
- 3. Конвертеры заводов цветной металлургии.
- 4. Печи для автогенной плавки концентратов на штейн и черновую медь.
- 5. Сушила. Установки для сушки сыпучих материалов. Установки для сушки изделий.
- 6. Строительные материалы и металлы, применяемые в печестроении.
- 7. Служба огнеупоров и футеровки металлургических печей.
- 8. Топливо и его горение. Общая характеристика топлива. Выбор топлива. Классификация металлургического топлива. Способы выражения состава топлива. Теплота сгорания топлива. Температура горения.
- 9. Основы проектирования печей цветной металлургии.
- 10. Тепловые балансы печей. Точность тепловых расчётов.
- 11. Показать возможность использования физико-математического аппарата, основ технической термодинамики и механики жидкостей и газов при проведении металлургических и теплотехнических расчетов оборудования пирометаллургических цехов.

6.2.2.3.2 Критерии оценивания

Отлично	Хорошо	Удовлетворительн о	Неудовлетворительно
Способен	Демонстрирует	Демонстрирует	Не способен
выполнять	хорошую	удовлетворительную	выполнять расчетные
расчетные	способность	способность	элементы проекта,
элементы проекта,	выполнять	выполнять	используя физико-
используя физико-	расчетные	расчетные элементы	математический
математический	элементы проекта,	проекта, используя	аппарат, знания
аппарат, знания	используя знания	знания законов и	законов технической
законов	законов и моделей	моделей переноса	термодинамики, а
технической	переноса тепла и	тепла и массы, а	также конструкций и
термодинамики, а	массы, а также	также конструкций и	принципа работы
также	конструкций и	принципа работы	оборудования
конструкций и	принципа работы	оборудования	пирометаллургических
принципа работы	оборудования	пирометаллургическ	цехов, с подробным
оборудования	пирометаллургиче	их цехов, с	описанием
пирометаллургиче	ских цехов, с	подробным	конструкции и
ских цехов, с	подробным	описанием	принципа работы
подробным	описанием	конструкции и	проектируемой печи,
описанием	конструкции и	принципа работы	теплового и
конструкции и	принципа работы	проектируемой	температурного
принципа работы	проектируемой	печи, теплового и	режимов работы
проектируемой	печи, теплового и	температурного	печей.
печи, теплового и	температурного	режимов работы	
температурного	режимов работы	печей. Затрудняется	
режимов работы	печей. Устное	с ответом при	
печей.	высказывание при	видоизменении	
	защите курсового	заданий. Допускает	
	проекта строится	существенные	
	логично и	неточности, излагает	
	грамотно, но не на	материал нелогично.	
	все вопросы		
	обучающийся		
	отвечает полно.		

7 Основная учебная литература

- 1. Металлургическая теплотехника: учебник для металлургических специальностей вузов: в 2 т. Т. 1. Теоретические основы / Под. науч. ред. В. А. Кривандина, 1986. 422.
- 2. Металлургическая теплотехника: учеб. для металлург. спец. вузов: В 2т. Т. 2. Конструкция и работа печей / Под. науч. ред. В. А. Кривандина, 1986. 597.
- 3. Клёц В. Э. Основы пирометаллургических производств: учебное пособие для вузов по направлению "Металлургия" / В. Э. Клёц; В. Э. Клец, Н. В. Немчинова, В. С. Кокорин, 2009. 143.
- 4. Кузьмина М. Ю. Основы металлургической теплотехники : учебное пособие / М. Ю. Кузьмина, 2016. 162.

5. Теплотехника и теплоэнергетика металлургического производства: учеб. для вузов по спец. "Металлургия цветных металлов" / Сергей Николаевич Гущин, Александр Семенович Телегин, В.И. Лобанов, В.Н. Корюков, 1993. - 366.

8 Дополнительная учебная литература и справочная

- 1. Теплотехника и теплоэнергетика металлургического производства: Сб. задач : учеб. пособие для студентов металлург. спец. вузов / В. В. Белоусов и др., 1993. 335.
- 2. Теплотехника металлургического производства: [Учеб. пособие для вузов по направлению подгот. бакалавров и магистров "Металлургия" и направлению подгот. дипломир. специалистов "Металлургия": В 2т/. Т. 1. Теоретические основы / В. А. Кривандин и др.], 2002. 606.
- 3. Теплотехника металлургического производства: [Учеб. пособие для вузов по направлению подгот. бакалавров и магистров "Металлургия" и направлению подгот. дипломир. специалистов "Металлургия": В 2т/. Т. 2. Конструкция и работа печей / В. А. Кривандин и др.], 2002. 733.
- 4. Панкратов Г.П. Сборник задач по теплотехнике : учеб. пособие для неэнергет. специальностей вузов / Г.П. Панкратов, 1986. 247.
- 5. Диомидовский Д. А. Металлургические печи цветной металлургии : учебное пособие для вузов по специальности "Металлургия цветных металлов" / Д. А. Диомидовский, 1970. 702.
- 6. Темлянцев М. В. Огнеупоры и футеровки плавильных и литейных агрегатов алюминиевого производства: учебное пособие для вузов по направлению 150100 Металлургия / М. В. Темлянцев, Е. Н. Темлянцева, 2008. 192.
- 7. Темлянцев М. В. Металлургия черных металлов и теплотехника. История развития науки и техники с древнейших времен до наших дней: учебное пособие по направлению 150100 Металлургия / М. В. Темлянцев, Н. В. Темлянцев, 2008. 170.
- 8. Самохвалов Γ . В. Металлургические электропечи : учебное пособие для вузов по направлению 150100 Металлургия / Γ . В. Самохвалов, М. В. Темлянцев, Н. В. Темлянцев; под ред. Γ . В. Самохвалова, 2009. 304.
- 9. Металлургические печи: Атлас : учеб. пособие для металлург. и машиностроит. спец. вузов / В. И. Миткалинный, В. А. Кривандин, В. А. Морозов, 1987. 384.
- 10. Теплоэнергетика и теплотехника: Общ. вопр. : справочник / [М. С. Алхутов и др.], 2000. 527.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/

- 11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем
- 1. Microsoft Windows (XP Prof + Vista Bussines) rus VLK поставка 08_2007
- 2. Microsoft Office 2007 VLK (поставки 2007 и 2008)

12 Материально-техническое обеспечение дисциплины

- 1. Мультимедиа-проектор Acer XD1150 ADV.DLP.ZOOM.SVGA800*600
- 2. Весы технические лабораторные "ВТ-1500"
- 3. Муфельная печь ЭКПС 10 (1300*С, 10л,материал камеры-волокно МКРВ)
- 4. Муфельная печь ЭКПС 10 (1300*С, 10л,материал камеры-волокно МКРВ)
- 5. Реагенты и химическая посуда для выполнения лабораторных работ
- 6. Сушильный шкаф ШС-80-01 СПУ