Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Структурное подразделение «Металлургии цветных металлов»

УТВЕРЖДЕНА:

на заседании кафедры металлургии цветных металлов Протокол N от 14 февраля 2025 г.

Рабочая программа дисциплины

«ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ В ЛИТЕЙНОМ ПРОИЗВОДСТВЕ» Направление: 22.04.02 Металлургия Совершенствование и оптимизация технологических процессов производства цветных металлов Квалификация: Магистр Форма обучения: очная

Документ подписан простой электронной подписью

Составитель программы: Кузьмина Марина

Юрьевна

Дата подписания: 27.05.2025

Документ подписан простой электронной подписью

Утвердил и согласовал: Немчинова Нина

Владимировна

Дата подписания: 29.05.2025

1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

1.1 Дисциплина «Инновационные технологии в литейном производстве» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции	
ПК-4 Способен разрабатывать предложения по		
совершенствованию технологических процессов и	ПК-4.4	
оборудования в области получения металлов и		
сплавов		
ПК-8 Способен применять принципы рационального		
природопользования для энерго- и	ПК-8.5	
ресурсосбережения технологических процессов в	1110.5	
металлургии		

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
		Знать существующие и
		перспективные энерго- и
		ресурсосберегающие технологии
		литейного производства; – виды
		отходов металлургической
		промышленности, пригодных для
		использования в процессах
		получения новых сплавов (красный
	Демонстрирует способность	шлам, пыль систем газоочистки
	разрабатывать предложения по	кремниевого производства и т.д.);
ПК-4.4	совершенствованию	Уметь применять принципы
	технологических процессов в	рационального природопользования
	области производства сплавов	для энерго- и ресурсосбережения
		технологических процессов при
		производстве сплавов;
		Владеть навыками оценки
		технических и организационных
		решений в литейном производстве
		сплавов с позиции повышения их
		энергетической и экономической
		эффективности.
ПК-8.5	Применяет принципы	Знать основы кристаллизации
	рационального	металлов и сплавов, их литейные
	природопользования для энерго-	свойства; виды литья,
	и ресурсосбережения	существующие и перспективные
	технологических процессов при	методы получения литых изделий;
	производстве сплавов	существующие и новые системы
		легирования; влияние современных
		методов обработки расплава и
		металлической продукции на

комплекс физико-механических
свойств готовой продукции;
Уметь управлять технологическими
процессами литья и прокатки;
разрабатывать предложения по
совершенствованию
технологических процессов в
области производства сплавов;
Владеть навыками определения
эффективных методов получения
готовой продукции, корректировки
технологических режимов литья,
прокатки и термообработки
металлопродукции с целью
повышения заданного уровня её
качества; знаниями в области
исследования свойств готовой
продукции на основе анализа
химического состава, а также
макро- и микроструктуры.

2 Место дисциплины в структуре ООП

Изучение дисциплины «Инновационные технологии в литейном производстве» базируется на результатах освоения следующих дисциплин/практик: «Управление инновациями», «Современные проблемы металлургии», «Экономика и управление проектами», «Анализ технологического цикла получения цветных металлов»

Дисциплина является предшествующей для дисциплин/практик: «Производственная практика: преддипломная практика»

3 Объем дисциплины

Объем дисциплины составляет – 3 ЗЕТ

Вид учебной работы	Трудоемкость в академических часах (Один академический час соответствует 45 минутам астрономического часа)		
	Bcero	Семестр № 4	
Общая трудоемкость дисциплины	108	108	
Аудиторные занятия, в том числе:	30	30	
лекции	20	20	
лабораторные работы	0	0	
практические/семинарские занятия	10	10	
Контактная работа, в том числе	0	0	
в форме работы в электронной информационной образовательной среде	0	0	
Самостоятельная работа (в т.ч. курсовое проектирование)	78	78	
Трудоемкость промежуточной аттестации	0	0	

Вид промежуточной аттестации		
(итогового контроля по дисциплине)	Зачет	Зачет

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр № 4

	TT	Виды контактной ра				CPC		Форма		
N₂	Наименование	Лен	кции	J	IP	П3(0	CEM)			Форма
п/п раздела и темы - дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	No	Кол. Час.	текущего контроля	
1	2	3	4	5	6	7	8	9	10	11
1	Теория кристаллизации	1	3							Устный опрос
2	Ресурсосберегаю щие технологии в литейном производстве	2	3			1	2			Устный опрос
3	Новые технологии повышения качества сплавов по неметаллическим включениям и примесям	3	4			2	2	1	18	Доклад
4	Инновационные производственны е технологии повышения качества готовой металлической продукции	4	4			3	3	1, 3	38	Доклад
5	Существующие и перспективные литейные сплавы. Литейные свойства сплавов	5	4			4	3			Устный опрос
6	Аддитивные технологии и композиционные материалы	6	2					2	22	Устный опрос
	Промежуточная аттестация									Зачет
	Bcero		20				10		78	

4.2 Краткое содержание разделов и тем занятий

Семестр № 4

N₂	Тема	Краткое содержание	
1	Теория кристаллизации	Жидкое состояние. Строение и свойства	
		металлических расплавов. Зарождение и рост	
		кристаллов. Формирование структуры и	
		дендритного строения сплавов. Неравновесная	

2	Ресурсосберегающие технологии в литейном производстве	кристаллизация и ликвационные свойства сплавов. Взаимосвязь характера затвердевания и макроструктуры отливки с видом диаграммы состояния сплавов. Модифицирование сплавов. Существующие и перспективные энерго- и ресурсосберегающие технологии литейного производства. Виды отходов металлургической промышленности, пригодных для использования в процессах получения новых сплавов (пыль систем газоочистки кремниевого производства, красный шлам и т.д.). Инновационные технологии получения алюминиевых сплавов с использованием отходов алюминиевого и
		глинозёмного производства. Перспективные технологии повышение смачиваемости микро- и наночастиц модификаторов.
3	Новые технологии повышения качества сплавов по неметаллическим включениям и примесям	Неметаллические включения. Газы. Рафинирование расплава от неметаллических включений и газов. Механизм работы флюсов. Классификация флюсов. Реакции, протекающие в ходе обработки расплава флюсами. Способы и оборудование для обработки расплава флюсами. Инновационные способы рафинирования технического алюминия методом фракционной кристаллизации
4	Инновационные производственные технологии повышения качества готовой металлической продукции	Улучшение качества продукции из алюминия и его сплавов (чушки, катанка, слитки, рондели), а также совершенствование технологических процессов их получения. Новые способы предотвращения усадочных трещин на литниковой поверхности алюминиевых чушек. Новые технологии прокатки алюминиевых сплавов.
5	Существующие и перспективные литейные сплавы. Литейные свойства сплавов	Общая характеристика литейных свойств. Связь литейных свойств с диаграммами состояния. Жидкотекучесть сплавов. Усадочные свойства сплавов. Усадочные дефекты (раковины, поры, рыхлоты). Причины "бурления" чушек при переплавке. Образование напряжений и трещин. Трещиноустойчивость сплавов. Способы предотвращения усадочных дефектов. Типы литейных сплавов. Типы диаграмм состояния двойных систем. Диаграмма состояния Al—Si. Влияние дополнительных легирующих элементов на диаграмму состояния Al—Si и свойства сплавов.
6	Аддитивные технологии и композиционные материалы	Виды и технологии 3-D печати. Металлические порошки, применяемые для 3-D печати. Области применения порошковых материалов. Методы получения металлических порошков, технология получения заготовок из конструкционных и специальных сплавов распылением (атомизацией) металла. Основы технологий получения

алюмоматричных композиционных материалов,
модифицированных углеродными
наноструктурами, а также керамическими микро-
и наночастицами.

4.3 Перечень лабораторных работ

Лабораторных работ не предусмотрено

4.4 Перечень практических занятий

Семестр № 4

Nº	Темы практических (семинарских) занятий	Кол-во академических часов
1	Отходы металлургического производства и перспективные способы их применения в литейном производстве алюминия	2
2	Перспективы разработки литейных комплексов по производству цилиндрических слитков большого диаметра	2
3	Определение литейных свойств сплавов и их склонности к образованию усадочных дефектов на примере изучения диаграммы состояния Al-Si	3
4	Технологические аспекты производства и применения флюсов	3

4.5 Самостоятельная работа

Семестр № 4

N₂	Вид СРС	Кол-во академических часов
1	Выполнение письменных творческих работ (писем, докладов, сообщений, ЭССЕ)	36
2	Подготовка к зачёту	22
3	Подготовка к практическим занятиям	20

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: Дискуссия, мозговой штурм

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по практическим занятиям

Инновационные технологии в литейном производстве: метод. указании к практическим занятиям / сост. М.П. Кузьмин. – Иркутск: Изд-во ИРНИТУ, 2019.

5.1.2 Методические указания для обучающихся по самостоятельной работе:

Подготовка к практическим занятиям; подготовка к устному опросу по итогам прошедшего практического занятия; написание доклада.

Подготовка к практическим занятиям

Цель – формирование в ходе занятий компетенций.

Задание на СРС – изучить основную и дополнительную литературу по теме предстоящего практического занятия.

Рекомендации к выполнению задания – при подготовке к практическому (семинарскому) занятию следует в первую очередь рассмотреть вопросы по теме занятия. При подготовке к практическим занятиям необходимо проработать литературу, указанную преподавателем, в объеме изучаемой темы. Самостоятельное изучение разделов курса производится с использованием литературных источников и интернет-ресурсов. Рекомендуемый график выполнения отдельных этапов СРС – обучающийся знакомится с РПД, в которой указан перечень практических занятий и рекомендуемая основная и дополнительная литература.

Критерии оценки качества выполнения работы – активная работа обучающегося на практическом занятии.

Доклад (как результат подготовки к практическим занятиям 3,4)

Цель – приобретение опыта самостоятельной творческой деятельности,

продемонстрировать способность к использованию творческого потенциала, повысить общекультурный уровень.

Задание на СРС – в начале семестра обучающийся выбирает одну из предложенных тем для подготовки доклада.

Требования к форме и содержанию отчетных материалов – после самостоятельного изучения литературы на очередном занятии обучающийся должен выступить перед одногруппниками с докладом по заранее заданной теме.

Рекомендации к выполнению задания – обучающийся при выполнении данного вида СРС может пользоваться как рекомендуемыми литературой и информационными ресурсами, так и подбирать, и использовать новые информационные источники по тематике доклада. Рекомендуемый график выполнения отдельных этапов СРС – в начале семестра выдается задание на написание доклада.

Контроль за выполнением СРС – выступление с докладом.

Примерные тематики докладов:

- 1) Литейные свойства цветных и чёрных металлов.
- 2) Жидкотекучесть сплавов.
- 3) Усадочные свойства сплавов.
- 4) Усадочные раковины.
- 5) Усадочная пористость.
- 6) Образование напряжений и трещин, трещиноустойчивость сплавов.
- 7) Типы диаграмм состояния двойных систем.
- 8) Влияние дополнительных легирующих элементов на диаграмму состояния и свойства сплавов.
- 9) Новые алюминиевые сплавы с улучшенными физико-механическими свойствами.
- 10) Новые направления и технологии в мировой алюминиевой промышленности. Критерии оценки качества выполнения данного вида СРС – полнота раскрытия темы; качество изложения и донесения информации; уровень владения материалом; умение отвечать на вопросы.

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 семестр 4 | Устный опрос

Описание процедуры.

Устный опрос обучающихся производится в начале каждого практического занятии на основе теоретического и практического материала, предоставленного на предыдущем занятии. Объявление результатов опроса осуществляется сразу после его завершения.

Теория кристаллизации (раздел 1)

Вопросы для контроля:

- 1) Почему при кристаллизации металлов и сплавов вместо кристаллов полногранной формы образуются дендриты?
- 2) Что представляет собой эвтектика?
- 3) Опишите характер затвердевания сплавов с узким и широким интервалом кристаллизации.

Ресурсосберегающие технологии в литейном производстве (раздел 2) Вопросы для контроля:

- 1) Перечислите основные виды отходов алюминиевой промышленности.
- 2) Источником каких ценных химических элементов является красный шлам?
- 3) Опишите способы повышения смачиваемости дисперсных неметаллических частиц алюминиевым расплавом.

Новые технологии повышения качества сплавов по неметаллическим включениям и примесям (раздел 3)

Вопросы для контроля:

- 1) Назовите основные способы дегазации алюминиевого расплава.
- 2) Назовите основные химические элементы, входящие в состав флюсов.
- 3) Перечислите основные способы рафинирования алюминия.

Инновационные производственные технологии повышения качества готовой металлической продукции (раздел 4)

Вопросы для контроля:

- 1) Объясните влияние усадочных дефектов на безопасность производства фасонных отливок.
- 2) Назовите основные методы управления структурой металла.
- 3) Что такое «наследственность» металла?

Существующие и перспективные литейные сплавы. Литейные свойства сплавов (раздел 5) Вопросы для контроля:

- 1) Назовите литейные свойства сплавов.
- 2) Дайте определение процессу модифицирования.
- 3) Опишите влияние положения сплава на диаграмме состояния протекание усадки.

Аддитивные технологии и композиционные материалы (раздел 6) Вопросы для контроля:

1) Назовите основные направления получения металлических изделий с использованием аддитивных технологий.

- 2) Что такое селективное лазерное спекание?
- 3) Перечислите основные виды углеродных наноструктур, которые могут использоваться в качестве модификаторов прочности в процессе получени металломатричных композитов.

Критерии оценивания.

Правильное формулирование ответов на вопросы. Использование в ходе ответа знаний полученных в ходе практических занятий и самостоятельной подготовки (изучения дополнительной литературы).

6.1.2 семестр 4 | Доклад

Описание процедуры.

Получить задание у преподавателя, подготовить доклад, выступить перед аудиторией (студенческой группой). Ответить на вопросы.

Тема 3 – Новые технологии повышения качества сплавов по неметаллическим включениям и примесям

Вопросы для контроля:

- 1. Виды неметаллических включений, присутствующих в алюминиевом расплаве.
- 2. Виды газов, присутствующих в алюминиевом расплаве.
- 3. Действие каких видов флюсов основано на флотации?
- 4. Действие каких видов флюсов основано на химическом взаимодействии?
- 5. Какие химические соединения входят в состав флюсов?
- 6. Перечислите возможные пути предотвращения окисления (угара) алюминия.
- 7. Опишите механизм осушения шлака.
- 8. Схема очистки алюминия от примесей щелочных и щелочноземельных металлов флюсом.
- 9. Основные технологии рафинирования алюминия от металлических примесей.
- 10. Дайте определение понятию «фракционная кристаллизация».

Teма 4 – Инновационные производственные технологии повышения качества готовой металлической продукции

Вопросы для контроля:

- 1. Отличие чушек и фасонных отливок.
- 2. Назовите оптимальные технологические параметры при литье чушек алюминия и его сплавов.
- 3. Схема производства алюминиевой катанки.
- 4. Назовите преимущества технологии «СЛИП» от традиционного способа получения алюминиевой катанки.
- 5. Опишите схему производства ронделей.
- 6. Назовите основные методы управления структурой металла.
- 7. Что такое «наследственность» металла?
- 8. Перечислите факторы жидкого состояния, влияющие на образование усадочных дефектов.
- 9. Перечислите перспективные способы предотвращения образования усадочных дефектов.
- 10. Назовите основные металлические системы, предназначенных для получения

высокопрочных сплавов.

Критерии оценивания.

Полнота раскрытия темы, предлагаемой для подготовки доклада; уровень владения материалом; умение отвечать на вопросы.

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
ПК-4.4	Демонстрирует знания основ кристаллизации металлов и сплавов, их литейных свойств, существующих и перспективных методов получения литых изделий, существующих и новых систем легирования, влияние современных методов обработки расплава и металлической продукции на комплекс физико-механических свойств готовой продукции. Демонстрирует навыки разработки предложений по совершенствованию технологических процессов в области производства сплавов.	Устное собеседование по вопросам к зачёту
ПК-8.5	Демонстрирует знание существующих и перспективные энерго- и ресурсосберегающих технологий литейного производства, видов отходов металлургической промышленности, пригодных для использования в процессах получения новых сплавов (красный шлам, пыль систем газоочистки кремниевого производства и т.д.). Владеет навыками оценки технических и организационных решений в литейном производстве сплавов с позиции повышения их энергетической и экономической эффективности (за счёт использования перспективных попутных продуктов и отходов металлургического производства).	Устное собеседование по вопросам к зачёту

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 4, Типовые оценочные средства для проведения зачета по дисциплине

6.2.2.1.1 Описание процедуры

Устное собеседование по вопросам к зачёту

Пример задания:

- 1. Классификация примесей, содержащихся в техническом алюминии, исходя из их процентного содержания.
- 2. Описание и прогнозирование влияния примесей технического алюминия на свойства готовой продукции.
- 3. Понятие фракционной кристаллизации и возможности её применения в литейном производстве алюминия.
- 4. Методы предотвращения образования усадочных дефектов при литье чушек алюминия и его сплавов.
- 5. Технология совмещенного литья, прокатки и прессования.
- 6. Энергосберегающие технологии в литейном производстве.
- 7. Особенности получения термостойких проводниковых сплавов системы Al–Zr.
- 8. Особенности получения высокопрочных сплавов системы Al–Mg–Sc.
- 9. Особенности получения деформируемых сплавов системы Al-Cu-Mg-Zr.
- 10. Какие алюминиевые сплавы используются для получения порошков для 3-D печати?
- 11. Назовите особенности межфазного взаимодействия в системе «алюминий–SiO2».
- 12. Понятие межфазного слоя.
- 13. Основные отличия твердофазных и жидкофазных способов получения композиционных материалов.
- 14. Что представляет собой процесс наноструктурирования сплавов?
- 15. Классификация примесей, содержащихся в техническом алюминии, исходя из их процентного содержания.
- 16. Отличие гомогенного и гетерогенного процессов образования зародышей при кристаллизации металла.
- 17. Что называется сплавом? Дайте определение и опишите разницу между легирующими элементами и модифицирующими добавками.
- 18. Классификация алюминиевых сплавов.
- 19. Назовите основные виды литейных алюминиевых сплавов.
- 20. В чём разница между модификаторами первого и второго рода?
- 21. Что представляет собой ликвация? Классификация видов ликвации.
- 22. Виды усадки.
- 23. Назовите принципы нахождения оптимального легирующего комплекса
- 24. Способы рафинирования расплава от неметаллических включений и газов.
- 25. Назовите причины "бурления" чушек при их переплавке.
- 26. Классификация флюсов и механизм их действия.
- 27. Перечислите основные способы рафинирования алюминиевого расплава от неметаллических включений и газовых включений.
- 28. Перечислите виды термической обработки алюминиевых сплавов.
- 29. Что представляет собой отжиг? Виды отжига.
- 30. Назовите отличия термической обработки и термомеханической обработки.
- 31. Виды термомеханической обработки.
- 32. Понятие рекристаллизации, её виды.

- 33. Классификация прокатных станов для производства катанки.
- 34. Устройство и принцип действия литейно-прокатного агрегата.
- 35. Виды прокатных изделий.

-

6.2.2.1.2 Критерии оценивания

Зачтено

Демонстрирует знание существующих и перспективные энерго- и ресурсосберегающих технологий литейного производства, видов отходов металлургической промышленности, пригодных для использования в процессах получения новых сплавов (красный шлам, пыль систем газоочистки кремниевого производства и т.д.). Владеет навыками оценки технических и организационных решений в литейном производстве сплавов с позиции повышения их энергетической и экономической эффективности (за счёт использования перспективных попутных продуктов и отходов металлургического производства).

Демонстрирует знания основ кристаллизации металлов и сплавов, их литейных свойств, существующих и перспективных методов получения литых изделий, существующих и новых систем легирования, влияние современных методов обработки расплава и металлической продукции на комплекс физико-механических свойств готовой продукции. Демонстрирует навыки разработки предложений по совершенствованию технологических процессов в области производства сплавов.

Не зачтено

Не демонстрирует знание существующих и перспективные энерго- и ресурсосберегающих технологий литейного производства, видов отходов металлургической промышленности, пригодных для использования в процессах получения новых сплавов (красный шлам, пыль систем газоочистки кремниевого производства и т.д.). Не владеет навыками оценки технических и организационных решений в литейном производстве сплавов с позиции повышения их энергетической и экономической эффективности (за счёт использования перспективных попутных продуктов и отходов металлургического производства).

Не демонстрирует знания основ кристаллизации металлов и сплавов, их литейных свойств, существующих и перспективных методов получения литых изделий, существующих и новых систем легирования, влияние современных методов обработки расплава и металлической продукции на комплекс физико-механических свойств готовой продукции. Не демонстрирует навыки разработки предложений по совершенствованию технологических процессов в области производства сплавов.

7 Основная учебная литература

- 1. Кузьмина М. Ю. Физико-химические основы литейного производства : учебное пособие / М. Ю. Кузьмина, М. П. Кузьмин, 2018. 175.
- 2. Беляев А. И. Металлургия легких металлов : учебник для вузов по специальности "Металлургия цветных металлов" / А. И. Беляев, 1970. 367.
- 3. Москвитин В. И. Металлургия легких металлов: учебник для вузов по специальности "Металлургия цветных металлов" направления подготовки "Металлургия" / В. И. Москвитин, И. В. Николаев, Б. А. Фомин, 2005. 413.

8 Дополнительная учебная литература и справочная

- 1. Исследование литейных процессов : учебное пособие по специальности 150104 "Литейное производство черных и цветных металлов" / А. А. Усольцев [и др.], 2013. 194.
- 2. Либенсон Герман Абрамович. Процессы порошковой металлургии : учеб. для вузов по специальности 110800 "Порошковая металлургия, композиц. материалы, покрытия": [В 2т.]. Т. 1. Производство металлических порошков / Г. А. Либенсон, В. Ю. Лопатин, Г. В. Комарницкий, 2001. 366.
- 3. Методы и модели управления проектами в металлургии / В. С. Смирнов, С. А. Власов, Е. С. Ваулинский, Б. И. Лебедев, 2001. 166.
- 4. Жильцов Новые технологии и материалы в машиностроении и металлургии : учебное пособие. Ч. 1 : Наноматериалы и нанотехнологии в машиностроении и металлургии, 2011. 179.
- 5. Справочник металлурга. Производство алюминия и сплавов на его основе : монография / Б. И. Зельберг, Л. В. Рагозин, А. Г. Баранцев [и др.], 2013. 675.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/
- 11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем
- 2. Microsoft Office Standard 2010_RUS_ поставка 2010_(артикул 021-09683)

12 Материально-техническое обеспечение дисциплины

- 1. Экран Projecta SlimScreen настенный
- 2. Проектор "Epson EB-S18"