Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Структурное подразделение «Сибирская школа геонаук»

УТВЕРЖДЕНА:

на заседании кафедры Протокол №29 от 10 апреля 2025 г.

Рабочая программа дисциплины

«ГИДРАВЛИКА И НЕФТЕГАЗОВАЯ ГИДРОДИНАМИКА»				
Направление: 21.04.01 Нефтегазовое дело				
Строительство нефтяных и газовых скважин в сложных горно-геологических условиях				
Квалификация: Магистр				
Форма обучения: очная				

Документ подписан простой электронной подписью Составитель программы: Аузина Лариса Ивановна Дата подписания: 19.06.2025

Документ подписан простой электронной подписью Утвердил: Ланько Анна Викторовна

Дата подписания: 20.06.2025

Документ подписан простой электронной подписью Согласовал: Романов Григорий Радионович Дата подписания: 20.06.2025

1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

1.1 Дисциплина «Гидравлика и нефтегазовая гидродинамика» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ОПК-3 Способен разрабатывать научно-техническую, проектную и служебную документацию, оформлять	OHV 2.2
научно-технические отчеты, обзоры, публикации, рецензии	ОПК-3.2
ОПК-4 Способен находить и перерабатывать	
информацию, требуемую для принятия решений в научных исследованиях и в практической	ОПК-4.3
технической деятельности	
УК-1 Способен осуществлять критический анализ	
проблемных ситуаций на основе системного подхода,	УК-1.1
вырабатывать стратегию действий	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ОПК-3.2	Определяет последовательность выполнения научно- исследовательских задач для повышения эффективности нефтегазового производства, соотносит достигнутые результаты с критериями оценки	Знать основы разработки научно-технической, проектной и служебной документации, а также оформления научно технических отчетов. Уметь разрабатывать научно техническую, проектную и служебную документацию и оформлять научно-технические отчеты. Владеть приемами и методами разработки научно-технической, проектной и служебной документации, а также оформления научно-технических отчетов.
ОПК-4.3	Применяет методы анализа производственных данных для научных исследований в нефтегазовом производстве	Знать методы и приемы подбора и обработки литературной и архивной информации, необходимой для принятия решений в научных исследованиях и в практической технической деятельности. Уметь подбирать и обрабатывать литературную и архивную информацию. Владеть приемами и методами подбора и обработки

		литературной и архивной информации.
УК-1.1	Анализирует задачу и находит информацию, необходимую для решения поставленной задачи, рассматривает возможные варианты решения задачи	Знать методы и приемы анализа проблемных ситуаций на основе системного подхода, а также выработки стратегии действий. Уметь использовать методы и приемы анализа проблемных ситуаций на основе системного подхода, и выработки стратегии действий. Владеть приемами и методами анализа проблемных ситуаций на основе системного подхода, а также выработки стратегии действий.

2 Место дисциплины в структуре ООП

Изучение дисциплины «Гидравлика и нефтегазовая гидродинамика» базируется на результатах освоения следующих дисциплин/практик: «Геология месторождений нефти и газа», «Нефтегазопромысловое дело», «Управление разработкой нефтяных и газовых месторождений», «Инженерно-геологические изыскания для строительства нефтегазопромысловых сооружений», «Математическое моделирование и статистический анализ в нефтегазовой промышленности»

Дисциплина является предшествующей для дисциплин/практик: «Производственная практика: научно-исследовательская работа (научно-исследовательский семинар)», «Производственная практика: технологическая практика»

3 Объем дисциплины

Объем дисциплины составляет – 4 ЗЕТ

Вид учебной работы	Трудоемкость в академич (Один академический час со минутам астрономическ	ответствует 45
	Всего	Семестр № 3
Общая трудоемкость дисциплины	144	144
Аудиторные занятия, в том числе:	30	30
лекции	15	15
лабораторные работы	0	0
практические/семинарские занятия	15	15
Самостоятельная работа (в т.ч. курсовое проектирование)	114	114
Трудоемкость промежуточной аттестации	0	0
Вид промежуточной аттестации (итогового контроля по дисциплине)	Зачет	Зачет

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр № 3

			Видь	і конта	ктной ра	боты				_	
N₂	Наименование	Лен	ции		IP		CEM)			СРС Форма	
п/п	раздела и темы дисциплины	Nº	Кол.	No	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	текущего контроля	
1	2	3	4	5	6	7	8	9	10	11	
1	Жидкости и газы. Виды моделей. Физические свойства									Устный опрос	
2	Основы механики сплошной среды. Пористая среда: модели и свойства	1	2			1	2			Устный опрос, Решение задач	
3	Гидравлика. Основные законы гидростатики	4	2			2	2	1	30	Решение задач	
4	Гидродинамика.					3	1			Устный опрос, Решение задач	
5	Анализ размерностей и теория подобия					4	2			Устный опрос, Решение задач	
6	Одномерное установившееся движение несжимаемой жидкости в пористой среде	2	3			5	2	2	30	Решение задач	
7	Неустановившаяс я фильтрация флюидов в пористой среде	3	4			6	2			Решение задач	
8	Фильтрация многофазных систем					7	2			Решение задач, Устный опрос	
9	Численные методы решения гидродинамическ их задач	5	4			8	2	3	54	Решение задач	
	Промежуточная аттестация									Зачет	
	Всего		15				15		114		

4.2 Краткое содержание разделов и тем занятий

Семестр № $\underline{3}$

No	Тема	Краткое содержание
1	Жидкости и газы. Виды	Построение стационарных и нестационарных
	моделей. Физические	моделей фильтрации флюидов в подземных
	свойства	гидродинамических системах. Основы механики
		сплошных сред. Понятие о моделировании.

		Модели фильтрационного течения. Модели
		коллекторов: геометрические, механические.
		Основные физические характеристики
		коллекторов.
2	Основы механики сплошной среды.	Пористая среда, её простейшие модели и свойства.
	Пористая среда:	Идеализированные модели пористых сред:
	модели и свойства	фиктивный грунт, идеальный грунт.
		Идеализированные модели трещинных сред.
		Идеализированные модели трещиновато -
		пористых сред. Основы моделирования процессов
		фильтрации флюидов.
3	Гидравлика. Основные	Скорость фильтрации кажущаяся и истинная.
	законы гидростатики	Закон Дарси. Коэффициент фильтрации и его связь
		с напором и давлением. Границы применимости
		закона Дарси: верхняя и нижняя. Число
		Рейнольдса. Нелинейные законы фильтрации.
		Уравнение Краснопольского. Формула Пуазейля,
		формула Дарси-Вейсбаха
4	Гидродинамика.	Уравнение Д.Бернулли. Статическое и
		динамическое давление. Потенциальная и
		кинетическая энергия потока. Закон сохранения
		энергии. Уравнение Л.Эйлера. Уравнение
		неразрывности потока. Расход объемный и
		весовой
		(массовый). Закон сохранения массы.
5	Анализ размерностей и	Анализ размерностей и теория подобия. π-
	теория подобия	Теорема.
		Основные системы размерностей: СИ, ТС,
		британская. Базовые показатели фильтрационного
		потока в различных системах измерений.
6	Одномерное	Гидродинамическая сетка: изобары и линии тока.
	установившееся	Основные модели плоских потоков:
	движение несжимаемой	прямолинейно-параллельный, плоско-радиальный,
	жидкости в пористой	
	среде	радиально-сферический. Практические примеры и
		графические модели.
7	Неустановившаяся	Понятие неустановившегося режима фильтрации.
	фильтрация флюидов в	Понятия об упругом режиме пласта. Теория
	пористой среде	упругого режима. Понятие неустановившейся
		фильтрация флюида. Режимы пласта. Основные
		параметры теории упругого режима: коэффициент
		объёмной упругости жидкости, коэффициент
		объёмной упругости пласта. Понятие упругого
		запаса. Коэффициент упругоёмкости пласта.
		Коэффициентом пьезопроводности пласта.
		Уравнение пьезопроводности.
8	Фильтрация	Понятие многофазной системы. Гомогенные и
	многофазных систем	гетерогенные системы. Основы теории
		многофазных систем. Основные характеристики

		многофазной фильтрации. Насыщенность,
		относительная проницаемость. Смачивающая и
		несмачивающая фазы, их взаимодействие. Водо-,
		нефте- и газонасыщенности.
9	Численные методы	Сущность моделирования процессов фильтрации
	решения	флюидов в пластах. Пассивные и активные прямые
	гидродинамических	
	задач	и обратные задачи. Понятие математическая
		модели. Достоинства и недостатки. Современные
		программные средства для моделирования
		природных систем НГКМ и условий их
		разработки.

4.3 Перечень лабораторных работ

Лабораторных работ не предусмотрено

4.4 Перечень практических занятий

Семестр № 3

Nº	Темы практических (семинарских) занятий	Кол-во академических часов
1	Определение скорости фильтрации флюида в прискважинной зоне и оценка нарушения линейного закона Дарси. Определение размерностей физических величин	2
2	Расчет эффективного диаметра минеральных частиц горной породы	2
3	Ламинарное и турбулентное движение потока. Определение критического значения скорости потока по числу Рейнольдса	1
4	Определение количества воды, необходимой для поддержания пластового давления и приемистости нагнетательных скважин	2
5	Расчеты гидродинамических параметров продуктивных пластов при неустановившихся режимах фильтрации флюида	2
6	Расчет простого трубопровода	2
7	Расчет давления на забое скважин, работающих в условиях естественного напорного режима.	2
8	Определение нефтеотдачи в зависимости от упругих свойств жидкости и породы	2

4.5 Самостоятельная работа

Семестр № 3

No	Вид СРС	Кол-во академических часов
1	Подготовка к зачёту	30
2	Проработка разделов теоретического материала	30

3	Решение специальных задач	54
_		

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: Дискуссия

- 5 Перечень учебно-методического обеспечения дисциплины
- 5.1 Методические указания для обучающихся по освоению дисциплины
- 5.1.1 Методические указания для обучающихся по практическим занятиям
- 5.1.1 Методические указания для обучающихся по практическим работам: Аузина, Лариса Ивановна. Нефтегазовая гидромеханика [электронный ресурс]: Методические указания по выполнению практических заданий и самостоятельных работ для студентов очной формы обучения. Иркутск: ИРНИТУ, 2018г.
- 5.1.2 Методические указания для обучающихся по самостоятельной работе:

Аузина, Лариса Ивановна. Нефтегазовая гидромеханика [электронный ресурс]: Методические указания по выполнению практических заданий и самостоятельных работ для студентов очной формы обучения. Иркутск: ИРНИТУ, 2018г.

- 6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине
- 6.1 Оценочные средства для проведения текущего контроля
- 6.1.1 семестр 3 | Решение задач

Описание процедуры.

- ответы на вопросы, - самостоятельное решение задачи, - командное обсуждение результатов решения.

Критерии оценивания.

- активное участие в командной работе при ответах на вопросы и обсуждении результатов решения задачи 10 баллов, - не активное участие в командной работе при ответах на вопросы и обсуждении

результатов решения задачи 5 баллов, - неучастие в командной работе при ответах на вопросы и обсуждении результатов решения задачи 0 баллов.

6.1.2 семестр 3 | Устный опрос

Описание процедуры.

Опрос с использованием интерактивных методов: работы в команде и дискуссии

Критерии оценивания.

- активное участие в командной работе при ответах на вопросы и обсуждении результатов решения задачи 10 баллов, - не активное участие в командной работе при ответах на вопросы и обсуждении

результатов решения задачи 5 баллов, - неучастие в командной работе при ответах на

вопросы и обсуждении результатов решения задачи 0 баллов.

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
ОПК-3.2	Глубоко и прочно усвоен	Контрольные
	программный материал,	вопросы,
	грамотно решены	практические
	практические задачи, даны	задачи.
	ответы на все поставленные вопросы.	
ОПК-4.3	Твердое знание материала,	Контрольные
	грамотное решение	вопросы,
	практических задач, умение	практические
	письменно изложить	задачи,
	результаты научного	комплекты
	исследования и публичного	вопросов к
	их представления	промежуточной
		аттестации
		(зачету).
УК-1.1	Знание материала по	Контрольные
	использованию методов	вопросы,
	анализа, обобщения	практические
	геолого-геофизических	задачи,
	данных, владение	комплекты
	необходимыми навыками и	вопросов к
	приемами их применения в	промежуточной
	практической деятельности.	аттестации
		(зачету).

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 3, Типовые оценочные средства для проведения зачета по дисциплине

6.2.2.1.1 Описание процедуры

- 1. Для сдачи зачета по дисциплине магистрант должен иметь при себе: а) зачетку, б) все отчеты по выполненным за семестр практическим заданиям, в) распечатанный список вопросов, в) ручку и два листа чистой бумаги, г) собственные лекции, которыми при подготовке в аудитории при необходимости он сможет воспользоваться, их наличие и полнота будут учитываться при вынесении решения преподавателем.
- 2. При сдаче зачета студент получает три вопроса.

- 3. При правильном ответе более чем на 2 вопроса задания студент получает 20 баллов.
- 3. Студенты, имеющие задолженность по лабораторному практикуму, получают на зачете дополнительные вопросы.

Пример задания:

- 1. Стационарные и нестационарные моделей фильтрации флюидов в подземных гидродинамических системах.
- 2. Понятие сплошной среды.
- 3. Моделирование в нефтяной отрасли: цели, задачи, программные продукты.
- 4. Модели фильтрационного течения.
- 5. Модели коллекторов: геометрические, механические.
- 6. Основные физические характеристики коллекторов.
- 7. Природные жидкости: нефть, газ, подземные воды и их смеси.
- 8. Понятие фильтрации.
- 9. Теория фильтрации.
- 10. Жидкость идеальная, реальная, капельная.
- 11. Основные физические свойства жидкостей и газов.
- 12. Методы определения плотности, вязкости, сжимаемости.
- 13. Динамическая и кинематическая вязкость.
- 14. Закон внутреннего трения жидкости Ньютона.
- 15. Основные понятия о реологии.
- 16. Скорость фильтрации кажущаяся и истинная.
- 17. Закон А. Дарси.
- 18. Коэффициент фильтрации
- 19. Связь напора с давлением.
- 20. Уравнение Д.Бернулли.
- 21. Статическое и динамическое давление. Пьезометрическая поверхность.
- 22. Потенциальная и кинетическая энергия потока.
- 23. Закон сохранения энергии.
- 24. Уравнение Л.Эйлера.
- 25. Уравнение неразрывности потока.
- 26. Расход объемный и весовой (массовый).
- 27. Закон сохранения массы.
- 28. Границы применимости закона Дарси: верхняя и нижняя.
- 29. Число Рейнольдса.
- 30. Нелинейные законы фильтрации.
- 31. Уравнение Краснопольского.
- 32. Формула Пуазейля, формула Дарси-Вейсбаха.
- 33. Простые и сложные трубопроводы.
- 34. Потери напора в трубопроводе. Факторы, влияющие на эту величину.
- 35. Гидравлическое сопротивление и коэффициент шероховатости.
- 36. Определение давления р1 при заданных расходе жидкости Q и давлении р2.
- 37. Определение расхода Q при заданных давлениях p1 и p2.
- 38. Определение диаметра трубопровода d при заданных расходе Q и давлениях p1 и p2_

6.2.2.1.2 Критерии оценивания

Зачтено	Не зачтено
более 50 баллов	менее 50 баллов

7 Основная учебная литература

1. Басниев К. С. Подземная гидромеханика [Электронный ресурс] : учебное пособие / К. С.

Басниев, И. Н. Кочина, В. М. Максимов, 1993. - 416 с.

2. Дмитриев Н. М. Введение в подземную гидромеханику: учебное пособие для подготовки

бакалавров и магистров по направлению 553600 "Нефтегазовое дело" специальности 090800 "Бурение нефтяных и газовых месторождений" ... / Н. М. Дмитриев, В. В. Кадет, 2009. - 269 с.

8 Дополнительная учебная литература и справочная

1. Подземная гидравлика : учеб.для вузов по спец. "Технология и комплекс. механизация разраб. нефт. и газовых месторождений" / Каплан Сафербиевич Басниев, А.М. Власов, И.Н.

Кочина, В.М. Максимов, 1986. - 303 с.

- 2. Подземная гидромеханика : учеб.для вузов по направлению "Нефтегазовое дело" / К. С. Басниев [и др.], 2005. 495 с. Цена 285.11
- 3. Басниев К. С. Нефтегазовая гидромеханика : учеб.пособие для вузов по направлению "Нефтегазовое дело" / К. С. Басниев, Н. М. Дмитриев, Г. Д. Розенберг, 2005. 543 с. Цена

292.74

4. Подземная гидромеханика: учеб.для специальности 130603 "Рараб. и эксплуатация нефтяных и газовых месторождений"... / К. С. Басниев [и др.], 2006. - 488 с. - Цена 215.00

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/

11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем

- 1. Свободно распространяемое программное обеспечение Microsoft Windows
- 2. Свободно распространяемое программное обеспечение Microsoft Office

12 Материально-техническое обеспечение дисциплины

- 1. Комплекс измерительный для гидрогеологических исследований
- 2. MФУ SamsungSCX-3205
- 3. Компьютер Intel Core i7/DDR 8Gb/HDD 1Tb/GF 2Gb/DVDRW/LCD 23"/ИБП

4. Проектор "Epson EB465"