Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ **УНИВЕРСИТЕТ»**

Структурное подразделение «Радиоэлектроники и телекоммуникационных систем»

УТВЕРЖДЕНА:

на заседании кафедры Протокол №13 от 02 июня 2025 г.

Рабочая программа дисциплины

«ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ В ДИСПЕРСНЫХ СИСТЕМАХ»
Направление: 28.03.01 Нанотехнологии и микросистемная техника
Паправление. 20.03.01 Панотехнологии и микросистемная техника
Компоненты микро- и наносистемной техники
Квалификация: Бакалавр
Форма обучения: очная

Документ подписан простой электронной подписью Составитель программы: Бадырова Наталия Моисеевна Дата подписания: 19.06.2025

Документ подписан простой электронной подписью Утвердил: Ченский Александр

Геннадьевич

Дата подписания: 21.06.2025

Документ подписан простой электронной подписью Согласовал: Ниндакова Лидия

Очировна

Дата подписания: 20.06.2025

- 1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы
- 1.1 Дисциплина «Поверхностные явления в дисперсных системах» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ОПК ОС-4 Способность самостоятельно проводить	
экспериментальные исследования, анализировать	
полученные результаты, использовать основные	ОПК ОС-4.2
приемы обработки и представления полученных	OHK 0C-4.2
данных с применением современных компьютерных	
и информационных технологий	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
	Способен самостоятельно	Знать основные свойства
	применять знания об	дисперсных систем, основы
	устойчивости и кинетических свойствах дисперсных систем,	термодинамики поверхностных явлений;
	основах термодинамики	Уметь применять знания об
	поверхностных явлений; владеет	устойчивости и кинетических
	навыками грамотного	свойствах дисперсных систем;
ОПК ОС-4.2	обращения с химическим	Владеть навыками обработки и
	реактивами и оборудованием,	представления полученных
	способен использовать	экспериментальных результатов с
	основные приемы обработки и	применением современных
	представления полученных	компьютерных и информационных
	данных с применением	технологий
	современных компьютерных и	
	информационных технологий	

2 Место дисциплины в структуре ООП

Изучение дисциплины «Поверхностные явления в дисперсных системах» базируется на результатах освоения следующих дисциплин/практик: «Математика», «Физика», «Химия», «Дискретная математика»

Дисциплина является предшествующей для дисциплин/практик: «Материаловедение наноструктурированных материалов», «Химия наноматериалов и наносистем», «Производственная практика: преддипломная практика»

3 Объем дисциплины

Объем дисциплины составляет – 4 ЗЕТ

Вид учебной работы	Трудоемкость в академических часах (Один академический час соответствует 45 минутам астрономического часа)		
	Bcero	Семестр № 4	
Общая трудоемкость дисциплины	144	144	

Аудиторные занятия, в том числе:	64	64	
лекции	16	16	
лабораторные работы	32	32	
практические/семинарские занятия	16	16	
Самостоятельная работа (в т.ч.	44	44	
курсовое проектирование)	44	44	
Трудоемкость промежуточной	36	36	
аттестации	30	30	
Вид промежуточной аттестации			
(итогового контроля по дисциплине)	Экзамен	Экзамен	
	OKSUMEN	ORSUMEN	

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр № 4

		Виды контактной работы				D.C.	_			
N₂	№ Наименование		щии		IP .		CEM)	J C.	PC	Форма
п/п	раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Введение. Феноменология коллоидной химии. Предмет и задачи коллоидной химии.	1	2					1, 3	4	Устный опрос
2	Дисперсное состояние вещества. Классификация дисперсных систем	2	1	4	5	1	4	1, 2, 3	5	Устный опрос
3	Поверхностные явления Основы термодинамики поверхностных явлений. Капиллярные явления	3	2	1	5			1, 2, 3	5	Устный опрос
4	Самопроизвольны е процессы в поверхностном слое. Адсорбция. ПАВ. Теории адсорбции	4	2					1, 3	4	Устный опрос
5	Адсорбция из раствора на твердой поверхности. Явление смачивания. Адгезия	5	2	5	5	2	4	1, 2,	5	Отчет по лаборатор ной работе
6	Молекулярно- кинетические	6	2	2, 6	8			1, 2, 3	6	Отчет по лаборатор

	свойства дисперсных систем.									ной работе
7	Теории строения двойного электрического слоя. Мицеллярная теория строения лиофобных золей.	7	2	3, 7	9			1, 2, 2, 3	7	Устный опрос
8	Методы получения лиофобных дисперсных систем. Устойчивость дисперсных систем.	8	2			3	4	1, 3	4	Устный опрос
9	Методы получения лиофильных дисперсных систем	9	1			4	4	1, 3	4	Устный опрос
	Промежуточная аттестация								36	Экзамен
	Всего		16		32		16		80	

4.2 Краткое содержание разделов и тем занятий

Семестр № 4

No	Тема	Краткое содержание	
1	Введение.	Основные понятия и определения коллоидной	
	Феноменология	химии. История возникновения и эволюция идей в	
	коллоидной химии.	коллоидной химии. Коллоидная химия - наука о	
	Предмет и задачи	поверхностных явлениях и физико-химических	
	коллоидной химии.	свойствах дисперсных систем.	
2	Дисперсное состояние	Классификация дисперсных систем. Пути	
	вещества.	образования дисперсных систем. Примеры	
	Классификация	материи в коллоидном состоянии. Терминология	
	дисперсных систем	коллоидной химии. Степень дисперсности.	
		Дисперсная фаза, дисперсионная среда.	
3	Поверхностные явления	Молекулярные взаимодействия и особые свойства	
	Основы термодинамики	поверхностей раздела фаз. Методы оценки	
	поверхностных	свободной поверхностной энергии твердых тел.	
	явлений. Капиллярные	Внутреннее давление. Поверхностное натяжение.	
	явления	Явление капиллярности. Капиллярное давление,	
		закон Лапласа.	
4	Самопроизвольные	Условия самопроизвольного протекания	
	процессы в	изохорно-изотермических и изобарно-	
	поверхностном слое.	изотермических процессов. Адсорбция. Общие	
	Адсорбция. ПАВ.	положения, классификация. Количественные	
	Теории адсорбции	характеристики адсорбции. Фундаментальное	
		адсорбционное уравнение Гиббса. Классификация	
		ПАВ. Ориентация молекул ПАВ в поверхностном	
		слое. Теории адсорбции Фрейндлиха, Ленгмюра,	

		Поляни
5	Адсорбция из раствора	Адсорбция из раствора на твердой поверхности.
	на твердой	Явление смачивания. Виды смачивания. Адгезия.
	поверхности. Явление	Уравнение Юнга-Дюпре. Гидрофильная и
	смачивания. Адгезия	гидрофобная поверхности.
6	Молекулярно-	Броуновское движение, диффузия, осмотическое
	кинетические свойства	давление. Электрокинетические явления в
	дисперсных систем.	дисперсных системах. Потенциал течения.
		Потенциал седиментации. Электрофорез и
		электроосмос. Теории строения двойного
		электрического слоя. Мицеллярная теория
		строения лиофобных золей.
7	Теории строения	Электрокинетический потенциал. Влияние
	двойного	индифферентных и неиндифферентных
	электрического слоя.	электролитов и специфической адсорбции ионов
	Мицеллярная теория	на электрокинетический потенциал. Перезарядка
	строения лиофобных	поверхности. Изоэлектрическое состояние.
	золей.	
8	Методы получения	Диспергационные и конденсационные методы
	лиофобных дисперсных	получения дисперсных систем. Пептизация.
	систем. Устойчивость	Диализ. Ультафильтрация
	дисперсных систем.	
9	Методы получения	Самопроизвольное диспергирование. Критерий
	лиофильных	Ребиндера-Щукина. Мицеллообразование в
	дисперсных систем	растворах ПАВ. Критическая концентрация

4.3 Перечень лабораторных работ

Семестр $N_{\mathfrak{Q}}$ <u>4</u>

Nº	Наименование лабораторной работы	Кол-во академических часов
1	Влияние адсорбционных слоев на смачивание твердых поверхностей	5
2	Зависимость поверхностного натяжения индивидуальной жидкости от температуры	4
3	Электрофорез в золях	4
4	Получение и определение типа эмульсий	5
5	Молекулярная адсорбция из растворов на твердой поверхности	5
6	Определение порога коагуляции золя гидроксида железа и его стабилизации	4
7	Определение критической концентрации мицеллообразования (ККМ) в водных растворах коллоидных ПАВ	5

4.4 Перечень практических занятий

Семестр № 4

No	Темы практических (семинарских) занятий	Кол-во академических
1,-	Tempi iipuitiii teeliiii (eeminapeiiiii) suibitiiii	часов

1	Дисперсное состояние вещества.	4
1	Классификация дисперсных систем	4
2	Адсорбция из раствора на твердой поверхности.	4
	Явление смачивания. Адгезия	4
2	Методы получения лиофобных дисперсных	4
3	систем. Устойчивость дисперсных систем.	4
4 Методы получения лиофильных дисперсных		4
4	систем	4

4.5 Самостоятельная работа

Семестр № 4

No	Вид СРС	Кол-во академических часов
1	Оформление отчетов по лабораторным и практическим работам	18
2	Подготовка к сдаче и защите отчетов	8
3	Проработка разделов теоретического материала	18

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: разбор конкретных ситуаций, семинар в диалоговом режиме, мозговой штурм, диспут

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по практическим занятиям

- 1. Коллоидная химия. Поверхностные явления: методические рекомендации по выполнению лабораторных работ для студентов 2 курса специальности 210602 "Наноматериалы" Физико-технического института ИрГТУ / Иркут. гос. техн. ун-т, 2008. 48 с. Цена 21.00
- 2. Дисперсные системы. Кинетические свойства дисперсных систем, их устойчивость и коагуляция: метод. рекомендации по выполнению лаб. работ: для 2-го курса специальности 210602 "Наноматериалы" Физ.-техн. ин-та Иркут. гос. ун-та ... / сост. Л. Б. Белых, Л. О. Ниндакова, 2008. 48 с. Цена 30.00
- 3. Получение дисперсных систем. Оптические и электрические свойства : методические указания по выполнению лабораторных работ / Иркут. гос. техн. ун-т, 2008. 52 с. Цена 17.00

5.1.2 Методические указания для обучающихся по лабораторным работам:

Оформление отчетов по лабораторным работам выполняется по указаниям, приведенным в методических указаниях по практическим занятиям

5.1.3 Методические указания для обучающихся по самостоятельной работе:

Самостоятельная работа включает себя изучение лекционного материала с привлечением учебных пособий, самостоятельное изучение некоторых разделов, подготовку к практическим занятиям, к контрольным и лабораторным работам, подготовку отчетов по

лабораторным работам

Подготовка к практическим занятиям заключается в самостоятельном решении задач по темам и в работе с учебниками и дополнительной литературой. При работе с литературой следует вести запись основных положений (конспектировать отдельные разделы, выписывать новые термины и раскрывать их содержание)

Проработка отдельных разделов теоретического курса заключается в изучении теоретического материала с применением

- собственных конспектов лекций
- основных источников теоретической информации по дисциплине

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 семестр 4 | Отчет по лабораторной работе

Описание процедуры.

отчет по лабораторной работе оформляется согласно указаниям, приведенным в методических указаниях

Критерии оценивания.

Лабораторная работа может быть зачтена как выполненная и защищенная, если оформлен отчет по лабораторной работе со всеми необходимыми расчетами, графиками и выводами

6.1.2 семестр 4 | Устный опрос

Описание процедуры.

- 1. Введение Феноменология коллоидной химии. Предмет и задачи коллоидной химии.
- 2. Дисперсное состояние вещества. Классификация дисперсных систем
- 3. Поверхностные явления Основы термодинамики поверхностных явлений. Капиллярные явления
- 4. Самопроизвольные процессы в поверхностном слое. Адсорбция. ПАВ. Теории адсорбции
- 5. Теории строения двойного электрического слоя. Мицеллярная теория строения лиофобных золей.
- 6. Методы получения лиофобных дисперсных систем. Устойчивость дисперсных систем.
- 7. Методы получения лиофильных дисперсных систем Описание процедуры: Знание лекционного материала проверяется на лекциях и практических занятиях во время устного опроса по конкретной теме занятия. Вопросы для контроля:
- 1. Классификация дисперсных систем. Особенности ультрамикрогетерогенного состояния (наносостояния).
- 2. Броуновское движение в коллоидных системах. Теория Эйнштейна-Смолуховского.
- 3. Диффузия в коллоидных системах. Теория Эйнштейна.
- 4. Смачивание. Закон Юнга. Краевой угол; термодинамические условия смачивания и

растекания. Влияние ПАВ на краевые углы.

- 5. Методы измерения поверхностного натяжения.
- 6. Избирательное смачивание. Закон Юнга. Гидрофильные и гидрофобные поверхности твердых тел и порошков.
- 7. Межфазное натяжение и работа адгезии
- 8. Термодинамика поверхностных явлений в двухкомпонентных системах. Адсорбционное уравнение Гиббса.
- 9. Классификация ПАВ по молекулярному строению и механизму действий.
- 10. Поверхностное натяжение растворов ПАВ. Поверхностная активность. Уравнение Шишковского.
- 11. Строение адсорбционных слоев ПАВ на поверхности раздела раствор-газ. Динамический характер адсорбционного равновесия. Уравнение Ленгмюра.
- 12. Адсорбция ПАВ на поверхности раздела раствор-газ. Связь уравнений Гиббса, Ленгмюра и Шишковского.
- 13. Поверхностная активность. Теоретическое обоснование правила Дюкло-Траубе.
- 14. Строение адсорбционных слоев на поверхности раздела раствор ПАВ-воздух и определение молекулярных размеров ПАВ.
- 15. Адсорбция ПАВ из растворов на поверхности твердых тел. Правило выравнивания полярностей Ребиндера. Модифицирующие действие ПАВ.
- 16. Двойное электрический слой; его образование и строение.
- 17. Изменение потенциала в двойном электрическом слое для сильно и слабо заряженных поверхностей.
- 18. Электрокинетические явления. Теория электрофореза и электроосмоса
- 19. Влияние индифферентных и неиндифферентных электролитов на электрокинетический потенциал. Перезарядка поверхности. Изоэлектрическое состояние.
- 20. Химические методы получения коллоидных систем (наносистем). Строение мицелл гидрофобных золей.
- 21. Эмульсии. Классификация эмульсий. Методы определения типа эмульсий. Основные применения.
- 22. Стабилизация эмульсий и обращение фаз. Принцип подбора эмульгаторов.
- 23. Структурно-механический барьер по Ребиндеру как фактор устойчивости дисперсных систем.
- 24. Коагуляция гидрофобных коллоидов электролитами. Теоретическое обоснование правила Шульце-Гарди.
- 25. Влияние электролитов на электрокинетический потенциал.

Критерии оценивания.

Учитывается посещаемость лекций, наличие конспекта, поведение на лекции

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации	
ОПК ОС-4.2	Демонстрирует знание основных	Устное	
	свойств дисперсных систем. Умеет	собеседование на	

грамотно обр	раща	ться с хими	ческими	экзамене	по
реактивами	И	оборудо	ованием.	теоретическим	
Способен		обработать	И	вопросам	И
проанализиро	вать	пол	ученные	выполнение	
результаты	И	представить	ИХ В	практических	
соответствую	щем	формате.		заданий.	

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 4, Типовые оценочные средства для проведения экзамена по дисциплине

6.2.2.1.1 Описание процедуры

Экзамен проводится в форме устного опроса по билетам с предварительной подготовкой студента. Экзаменатор вправе задавать дополнительные вопросы и давать расчетные задачи по программе данного курса.

Экзаменационные билеты (вопросы) утверждаются на заседании кафедры и подписываются заведующим кафедрой не позднее, чем за две недели до начала экзаменационной сессии.

Предусмотрено устное собеседование со студентом, ответы на вопросы билета При выставлении оценки экзаменатор учитывает:

- знание фактического материала по программе;
- степень активности студента на семинарских занятиях;
- логику, структуру, стиль ответа; культуру речи, манеру общения; готовность к дискуссии, аргументированность ответа; уровень самостоятельного мышления; умение приложить теорию к практике, решить задачи;
- наличие пропусков семинарских и лекционных занятий по неуважительным причинам.

Пример задания:

- 1. Электрокинетические явления. Электрофорез и электроосмос
- 2. Классификация ПАВ по молекулярному строению и механизму действий.

6.2.2.1.2 Критерии оценивания

Отлично	Хорошо	Удовлетворительн о	Неудовлетворительно
студент полно и	дает ответ,	студент знает и	студент обнаруживает
связно излагает	удовлетворяющий	понимает основные	незнание большей
материал, дает	тем же	положения данной	части вопроса,
правильное	требованиям, что	темы, но:	допускает ошибки в
определение	и для отметки «5»,	1) излагает материал	формулировке
ОСНОВНЫМ	но допускает 1–2	неполно и допускает	определений и правил,
понятиям; может	ошибки, которые	неточности в	искажающие их смысл,
обосновать свои	сам же	определении	беспорядочно и
суждения,	исправляет,	понятий	неуверенно излагает
привести		2) не умеет	материал.

необходимые	доказательно
примеры	обосновать свои
	суждения и
	привести и примеры;
	3) излагает материал
	непоследовательно и
	допускает ошибки в
	языковом
	оформлении
	излагаемого ответа

7 Основная учебная литература

- 1. Дисперсные системы. Кинетические свойства дисперсных систем, их устойчивость и коагуляция: метод. рекомендации по выполнению лаб. работ: для 2-го курса специальности 210602 "Наноматериалы" Физ.-техн. ин-та Иркут. гос. ун-та ... / Иркут. гос. техн. ун-т, 2008. 48.
- 2. Получение дисперсных систем. Оптические и электрические свойства : методические указания по выполнению лабораторных работ / Иркут. гос. техн. ун-т, 2008. 52.
- 3. Коллоидная химия. Поверхностные явления: методические рекомендации по выполнению лабораторных работ для студентов 2 курса специальности 210602 "Наноматериалы" Физико-технического института ИрГТУ / Иркут. гос. техн. ун-т, 2008. 48.
- 4. Гельфман М. И. Коллоидная химия : учебник для технологических вузов / М. Гельфман, О. Ковалевич, В. Юстратов, 2008. 332.
- 5. Щукин Е. Д. Коллоидная химия : учебник для бакалавров по специальностям "Химия" и направлению "Химия" / Е. Д. Щукин, А. В. Перцов, Е. А. Амелина, 2014. 443.

8 Дополнительная учебная литература и справочная

- 1. Зимон А. Д. Коллоидная химия (в том числе и наночастиц) : учебник для вузов по направлениям "Химия" / А. Д. Зимон, 2007. 343.
- 2. Арсланов В. В. Нанотехнология. Коллоидная и супрамолекулярная химия: энциклопедический справочник: более 1000 словарных статей, упорядоченных по английским эквивалентам / В. В. Арсланов, 2015. 387.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/

11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем

- 1. Microsoft Windows Seven Professional (Microsoft Windows Seven Starter) Seven, Vista, XP_prof_64, XP_prof_32 поставка 2010
- 2. Microsoft Office 2007 Standard 2003 Suites и 2007 Suites поставка 2010

12 Материально-техническое обеспечение дисциплины

- 1. Компьютер "i5-4440(3.1)/4Gb/500Gb/VGA/23""
- 2. Компьютер "i5-4440(3.1)/4Gb/500Gb/VGA/23""
- 3. Компьютер "i5-4440(3.1)/4Gb/500Gb/VGA/23""
- 4. Компьютер "i5-4440(3.1)/4Gb/500Gb/VGA/23""
- 5. Компьютер "i5-4440(3.1)/4Gb/500Gb/VGA/23""
- 6. МПБ-3 микроскоп измерительный
- 7. МПБ-3 микроскоп измерительный
- 8. Привод лаб. ПЭ-0270
- 9. Привод лаб. ПЭ-0270
- 10. Фотоколориметр КФК-3-КМ
- 11. Фотоколориметр КФК-3-КМ
- 12. Сушильный шкаф СНОЛЗ,5 И2М
- 13. Микмед 6
- 14. Дистиллятор ДЭ-25
- 15. Весы лабораторные ВК-1500
- 16. микроскоп биологический Микмед-5
- 17. термостат жидкостный ЛАБ-ТС-01/12
- 18. стол для весов ЛАБ-1200
- 19. Мешалка магнитная с нагревом ІКА
- 20. Мешалка магнитная с нагревом ІКА
- 21. Весы аналитические "LEKI B1604"
- 22. Штатив лабораторный универсальный

- 23. Штатив лабораторный универсальный
- 24. Штатив лабораторный универсальный
- 25. Штатив лабораторный универсальный