Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ **УНИВЕРСИТЕТ»**

Структурное подразделение «Радиоэлектроники и телекоммуникационных систем»

УТВЕРЖДЕНА:

на заседании кафедры Протокол №13 от 02 июня 2025 г.

Рабочая программа дисциплины

«ХИМИЧЕСКИЕ И ФАЗОВЫЕ РАВНОВЕСИЯ»			
Направление: 28.03.01 Нанотехнологии и микросистемная техника			
Компоненты микро- и наносистемной техники			
Квалификация: Бакалавр			
Форма обучения: очная			

Документ подписан простой электронной подписью Составитель программы: Бадырова Наталия Моисеевна Дата подписания: 06.06.2025

Документ подписан простой электронной подписью Утвердил: Ченский Александр

Геннадьевич

Дата подписания: 21.06.2025

Документ подписан простой электронной подписью Согласовал: Ниндакова Лидия Очировна Дата подписания: 06.06.2025

1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

1.1 Дисциплина «Химические и фазовые равновесия» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ПКО-1 Способность к систематическому изучению	
научно-технической информации, отечественного и	
зарубежного опыта, анализу научных проблем по	
тематике проводимых исследований и разработок в	ПКО-1.1
области нанотехнологий и объектов нано- и	
микросистемной техники и умение представлять	
материалы в требуемом формате	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
	Имеет навыки расчета	Знать Знать: принципы расчета
	равновесий: химического,	химического, фазового равновесий в
	фазового, в растворах	растворах электролитов;
	электролитов, навыки работы в	Уметь Уметь: использовать
	лабораторном практикуме,	основные приемы обработки и
ПКО-1.1	способен использовать	представления полученных данных
	основные приемы обработки и	с применением современных
	представления полученных	компьютерных и информационных
	данных с применением	технологий;
	современных компьютерных и	Владеть Владеть: навыками работы
	информационных технологий	в лабораторном практикуме.

2 Место дисциплины в структуре ООП

Изучение дисциплины «Химические и фазовые равновесия» базируется на результатах освоения следующих дисциплин/практик: «Математика», «Физика», «Химия»

Дисциплина является предшествующей для дисциплин/практик: «Кинетика гомогенных процессов», «Материаловедение наноструктурированных материалов», «Нанокомпозитные материалы для микро- и наносистемной техники», «Поверхностные явления в дисперсных системах», «Производственная практика: научно-исследовательская работа»

3 Объем дисциплины

Объем дисциплины составляет – 5 ЗЕТ

Вид учебной работы	Трудоемкость в академических часах (Один академический час соответствует 45 минутам астрономического часа)		
	Всего	Семестр № 3	
Общая трудоемкость дисциплины	180	180	
Аудиторные занятия, в том числе:	64	64	
лекции	16	16	

лабораторные работы	32	32
практические/семинарские занятия	16	16
Самостоятельная работа (в т.ч. курсовое проектирование)	80	80
Трудоемкость промежуточной аттестации	36	36
Вид промежуточной аттестации (итогового контроля по дисциплине)	Экзамен, Курсовой проект	Экзамен, Курсовой проект

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр № $\underline{3}$

	Наименование	Виды контактной работы				CPC		Форма		
No		Лекции		Л	ЛР ПЗ(0		CEM)		PC	Форма
п/п	раздела и темы дисциплины	N₂	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Введение. Начала термодинамики	1	2	1, 2	8			3	8	Устный опрос
2	Термодинамическ ие потенциалы	2	2			1	3	4	8	Устный опрос
3	Химическое равновесие.	3	2	3	4	2	3	5	20	Устный опрос
4	Фазовые равновесия	4	2	7	6	3, 4	4	1	30	Устный опрос
5	Коллигативные свойства растворов	5	2			5	2			Устный опрос
6	Электролитическа я диссоциация	6	2	4, 5, 6	14	6	2	2	14	Устный опрос
7	Электрохимия	7	4			7	2			Устный опрос
	Промежуточная аттестация								36	Экзамен, Курсовой проект
	Всего		16		32		16		116	

4.2 Краткое содержание разделов и тем занятий

Семестр № $\underline{3}$

No	Тема	Краткое содержание	
1	Введение. Начала	Введение. Начала термодинамики Термохимия.	
	термодинамики	Применение термодинамических методов для	
		решения химических проблем.	
2	Термодинамические	Функции U, H, F, G как термодинамические	
	потенциалы	потенциалы. Изобарно-изотермический потенциал	
		(свободная энергия Гиббса).	
3	Химическое	Расчет химического равновесия Закон	
	равновесие.	действующих масс. Константа равновесия для	
		газофазных реакций. Признаки химического	

		равновесия. Расчет состава равновесной смеси
		Управление выходами химических реакций
4	Фазовые равновесия	Фазовое равновесие и основы физико-химического
		анализа. Термодинамическая теория фазовых
		равновесий.
5	Коллигативные	Растворы. Основные понятия и определения.
	свойства растворов	Эмпирические законы Рауля для давления пара,
		криоскопических и эбуллиоскопических эффектов
		и Вант-Гоффа для осмотического давления.
6	Электролитическая	Процесс электролитической диссоциации как
	диссоциация	взаимодействие веществ. Гидролиз. Диссоциация
		комплексных ионов.
7	Электрохимия	Окислительно-восстановительные и
		электрохимические процессы. Равновесные
		электродные процессы. Электродный потенциал.
		Классификация обратимых электродов,
		гальванические элементы, электрохимические
		цепи. Термодинамика обратимых
		электрохимических систем.

4.3 Перечень лабораторных работ

Семестр № $\underline{3}$

N₂	Наименование лабораторной работы	Кол-во академических часов
1	Определение парциальной мольной энтальпии образования кристаллогидрата из безводной соли	4
2	Определение теплового эффекта реакции нейтрализации	4
3	Изучение равновесия двух - компонентных жидких растворов с паром	4
4	Определение константы диссоциации слабого электролита и проверка закона разведения Оствальда	4
5	Определение предельной эквивалентной электрической проводимости сильных электролитов	4
6	Определение давления диссоциации кристаллогидрата соли	6
7	Построение диаграммы состояния 3-х компонентной системы	6

4.4 Перечень практических занятий

Семестр № <u>3</u>

Nº	Темы практических (семинарских) занятий	Кол-во академических часов
1	Внутренняя энергия, энтальпия, теплота и	3
	работа. Расчеты. Термохимия. Закон Гесса и его	

	следствия. Таблицы стандартных теплот	
	образования соединений; использование их для	
	вычисления теплового эффекта реакции.	
	Химическое равновесие. Константа равновесия	
2	реакций. Определение степени превращения и	3
	состава равновесной смеси. Управление	3
	выходами химических реакций	
3	Характеристики равновесной системы. Условия	2
3	фазового равновесия. Правило фаз Гиббса	2
	Определение количественных составов масс по	
	фазовым диаграммам равновесий: твердое-	
4	твердое, жидкость – жидкость, пар (газ) –	2
4	жидкость. Графическое представление состава	2
	трехкомпонентных систем методами Гиббса и	
	Розебома	
	Растворы. Понятия и определения.	
	Эмпирические законы Рауля для давления пара,	
5	криоскопических и эбуллиоскопических	2
	эффектов и Вант-Гоффа для осмотического	
	давления.	
	Электролиты. Степень диссоциации. Закон	
	действующих масс в растворах электролитов.	
6	Проводимость: удельная и молярная. Закон	2
	Кольрауша. Водородный показатель раствора.	
	Ионное произведение воды	
	Электродный потенциал; уравнение	
	равновесного электродного потенциала. Расчеты	
7	электродных потенциалов. Вычисление ЭДС.	2
	Электрохимические цепи. Расчеты по	
	уравнению Нернста	

4.5 Самостоятельная работа

Семестр № 3

No	Вид СРС	Кол-во академических часов
1	Написание курсового проекта (работы)	30
2	Оформление отчетов по лабораторным и практическим работам	14
3	Подготовка к практическим занятиям (лабораторным работам)	8
4	Подготовка к сдаче и защите отчетов	8
5	Проработка разделов теоретического материала	20

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: Дискуссия

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по курсовому проектированию/работе:

Методические указания для обучающихся по курсовому проектированию/работе: Выполнение курсовой работы

Выполнение курсовой работы проводится в программе PhD, разработанной на химическом факультете МГУ (Лаборатория химической термодинамики МГУ, Термоцентр им. В.П. Глушко, ИТЭС ОИВТ РАН) авторами: Д.х.н., проф. Г.Ф. Воронин , к.т.н., Г.В. Белов

Назначение программы

Программа предназначена для построения фазовых диаграмм однокомпонентных систем в координатах

температура – мольный объем (или плотность) при фиксированном давлении, давление – мольный объем (или плотность) при фиксированной температуре, двухкомпонентных систем в координатах температура-состав при фиксированном давлении или

давление-состав при фиксированной температуре, и соответствующих многокомпонентных квазибинарных систем.

Исходные данные — формулы зависимости характеристических функций всех возможных фаз системы (энергий Гиббса, энергий Гельмгольца) от естественных переменных: температуры, давления, объема, состава, и др. Рассчитанные диаграммы соответствуют термодинамически устойчивым состояниям системы. Помимо графического изображения равновесий в результате работы программы выводятся координаты особых точек диаграммы, в которых меняется фазовый состав системы и нарушается гладкость кривых, описывающих равновесия.

Для иллюстрации работы программы и некоторых возможностей ее использования прилагается база с данными, позволяющими построить ряд конкретных диаграмм. Для знакомства с работой программы следует ознакомиться с «Программой PhDi_ru_training» (Руководство пользователя) в файле PhDi_ru.pdf

Студентам предлагается работать с системами, имеющимися в базе данных программы. Открыв окно пользователя для просмотра одной из введенных систем необходимо подвести курсор к названию интересующей системы, после чего кнопкой «Расчет (F9)» запустить программу.

Работа с рассчитанной фазовой диаграммой:

- А) провести маркировку фазовых полей
- Б) нанести на диаграмму экспериментальные данные
- В) отредактировать график
- Γ) выполнить обозначения и как можно более полное описание особых точек, фазовых полей и линий на диаграмме
- Д) выбрать точки в пределах полей (в каждом поле) фазовой диаграммы и для каждой точки определить следующие данные
- содержание компонентов в данной точке (в % и в граммах)
- количество фаз и их состояние
- массу и массовую долю каждой фазы
- содержание компонентов в каждой фазе (в % и в граммах)
- массу каждой фазы по правилу рычага

Оформление курсовой работы выполняется согласно стандарту ИрГТУ.

Перечень примерных тем курсового проекта:

- 1. Диаграмма равновесий в системе Cr-Ni-O,T(x),LS_1
- 2. Диаграмма равновесий в системе A-B_RegSol4,(T,x)ls.
- 3. Диаграмма равновесий в системе Al-Au.
- 4. Диаграмма равновесий в системе A-B_regsol5(T,x)vls.

- 5. Диаграмма T(x) равновесий в системе (S)-(S') Co-Ni-O.
- 6. Диаграмма равновесий в системе Cu-Zn.
- 7. Диаграмма равновесий в системе A-B, RegSol1, T(x)VLS.
- 8. Диаграмма равновесий в системе Cd-Zn(P,x)vls.
- 9. Диаграмма равновесий в системе Cd-Zn(T,x)vls.
- 10. Диаграмма равновесий в системе CdTe-ZnTe.
- 11. Диаграмма равновесий в системе A-B_regsol6(T,x)ls.
- 12. Диаграмма равновесий в системе A-B_Regsol4,(T,x)vs.
- 13. Диаграмма равновесий в системе A K-Na-CI T(x), LS.
- 14. Диаграмма равновесий в системе A-B RegSol3, T(x) VLS.
- 15. Диаграмма равновесий в системе A-B RegSol2, T(x) VLS.
- 16. Диаграмма равновесий в системе Au-Na(T,x)ls.
- 17. Диаграмма равновесий в системе Bi-Sb(T,x)ls.
- 18. Диаграмма равновесий в системе Cr-Ni-O,T(x),LS_2

5.1.2 Методические указания для обучающихся по практическим занятиям

Ниндакова Л. О. Основы химической термодинамики : учебное пособие по направлениям подготовки "Нанотехнологии и микросистемная техника", "Инфокоммуникационные системы", "Радиотехника" / Л. О. Ниндакова, Н. М. Бадырова, 2018. - 91 с.

5.1.3 Методические указания для обучающихся по лабораторным работам:

Фазовые равновесия однокомпонентных систем. Растворы : методические указания к лабораторным работам для студентов 2-го курса специальности 210602 "Наноматериалы" / Иркут. гос. техн. ун-т, 2011. - 27 с. http://elib.istu.edu/viewer/view.php?file=/files/er-1677.pdf Одно- и двухкомпонентные системы. Фазовые равновесия : методические указания к лабораторным работам / Иркут. нац. исслед. техн. ун-т, 2016. - 40 с., включ обл. с.

5.1.4 Методические указания для обучающихся по самостоятельной работе:

Ниндакова Л. О. Основы химической термодинамики : учебное пособие по направлениям подготовки "Нанотехнологии и микросистемная техника", "Инфокоммуникационные системы", "Радиотехника" / Л. О. Ниндакова, Н. М. Бадырова, 2018. - 91 с.

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 семестр 3 | Устный опрос

Описание процедуры.

Входной контроль (ВК)

Описание процедуры: Входной контроль знаний студентов перед изучением курса проводится в виде устного собеседования или теста. Для усвоения курса необходимы знания в области математики, физики, общей и неорганической химии.

Тема (раздел) Химическое равновесие

Описание процедуры:

Знание лекционного материала проверяется на практических занятиях во время устного опроса по конкретной теме занятия. Устный опрос предполагает ответы студента на

поставленные вопросы во время практического занятия

Пример задания:

Химическое равновесие в системах типа: а) б)

- в) . Уравнение изотермы реакции Вант-Гоффа.
- 1. Методы расчета константы равновесия Кр.
- 2. Виды констант равновесия и связь между ними.
- 3. Связь констант равновесия со стандартными изменениями энергии Гиббса и Гельмгольца.

Критерии оценивания.

Отлично

Дан полный, развернутый ответ на поставленный вопрос;

- в ответе прослеживается четкая структура, логическая последовательность, отражающая сущность раскрываемых понятий, теорий, явлений;
- знания по предмету демонстрируются на фоне понимания его места в системе данной науки и междисциплинарных связей;
- свободное владение терминологией; ответы на дополнительные вопросы четкие, краткие;

Хорошо

Дан полный, развернутый ответ на поставленный вопрос, показано умение выделять существенные и несущественные признаки, причинно-следственные связи;

- рассказ недостаточно логичен с единичными ошибками в частностях, исправленными студентом с помощью преподавателя;
- ответы на дополнительные вопросы верные, но недостаточно полные и четкие;

Удовлетворительно

ответ не полный, с ошибками в деталях, умение раскрыть значение обобщённых знаний не показано, речевое оформление требует поправок, коррекции;

- логика и последовательность изложения имеют нарушения, студент не способен самостоятельно выделить существенные и несущественные признаки и причинно-следственные связи;
- студент не ориентируется в терминологии физической химии, допускает серьезные ошибки;
- студент не может ответить на большую часть дополнительных вопросов. Неудовлетворительно

ответ представляет собой разрозненные знания с существенными ошибками;

- присутствуют фрагментарность, нелогичность изложения, незнание терминологии, студент не осознает связь обсуждаемого вопроса с другими объектами дисциплины, речь неграмотная;
- ответы на дополнительные вопросы неверные или отсутствуют.

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения	Критории ополирания	Средства (методы)
компетенции	Критерии оценивания	оценивания промежуточной

		аттестации
ПКО-1.1	Отлично	Устное
	Дан полный, развернутый ответ на	собеседование на
	поставленный вопрос;	экзамене по
	- в ответе прослеживается четкая	теоретическим
	структура, логическая	вопросам и
	последовательность, отражающая	выполнение
	сущность раскрываемых понятий,	практических
	теорий, явлений;	заданий
	- знания по предмету	зидинин
	демонстрируются на фоне понимания	
	его места в системе данной науки и	
	междисциплинарных связей;	
	- свободное владение терминологией;	
	ответы на дополнительные вопросы	
	четкие, краткие;	
	Хорошо	
	Дан полный, развернутый ответ на	
	поставленный вопрос, показано	
	умение выделять существенные и	
	несущественные признаки, причинно-	
	следственные связи;	
	- рассказ недостаточно логичен с	
	единичными ошибками в частностях,	
	исправленными студентом с помощью	
	преподавателя;	
	- ответы на дополнительные вопросы	
	· ·	
	верные, но недостаточно полные и	
	четкие;	
	Удовлетворительно	
	ответ не полный, с ошибками в	
	деталях, умение раскрыть значение	
	обобщённых знаний не показано,	
	речевое оформление требует поправок, коррекции;	
	- логика и последовательность	
	изложения имеют	
	_	
	15	
	самостоятельно выделить	
	существенные и несущественные	
	признаки и причинно-следственные	
	связи;	
	- студент не ориентируется в	
	терминологии физической химии,	
	допускает серьезные ошибки;	
	- студент не может ответить на	
	большую часть дополнительных	
	вопросов.	
	Неудовлетворительно	
	ответ представляет собой	
	разрозненные знания с	
	разрозненные зпапия С	1

существенными ошибками;	
- присутствуют фрагментарность,	
нелогичность изложения, незнание	
терминологии, студент не осознает	
связь обсуждаемого вопроса с другими	
объектами дисциплины, речь	
неграмотная;	
- ответы на дополнительные вопросы	
неверные или отсутствуют.	

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 3, Типовые оценочные средства для проведения экзамена по дисциплине

6.2.2.1.1 Описание процедуры

Описание процедуры экзамена

Экзамен проводится в форме устного опроса по билетам с предварительной подготовкой студента. Экзаменатор вправе задавать дополнительные вопросы и давать расчетные задачи по программе данного курса.

Экзаменационные билеты (вопросы) утверждаются на заседании кафедры и подписываются заведующим кафедрой не позднее, чем за две недели до начала экзаменационной сессии.

При выставлении оценки экзаменатор учитывает:

- знание фактического материала по программе, в том числе; знание обязательной литературы, современных публикаций по программе курса, а также истории науки;
- степень активности студента на семинарских занятиях;
- логику, структуру, стиль ответа; культуру речи, манеру общения; готовность к дискуссии, аргументированность ответа; уровень самостоятельного мышления; умение приложить теорию к практике, решить задачи;
- наличие пропусков семинарских и лекционных занятий по неуважительным причинам.

Пример задания:

Министерство науки и высшего образования РФ Иркутский национальный
исследовательский технический университет
Экзаменационный билет №1
по дисциплине Химические и фазовые равновесия
« <u> </u>
Направление 28.03.01 «Нанотехнологии и микросистемная техника»
664074 г. Иркутск, Лермонтова, 83

- 1. Классификация растворов. Растворы в различных агрегатных состояниях. Специфика жидких растворов. Понятие о сольватации. Физические и химические теории растворов. Т-Д условия образования растворов. Единицы концентрации.
- 2. Равновесие пар жидкий раствор в системах с ограниченной взаимной растворимостью жидкостей и с взаимно нерастворимыми жидкостями.

6.2.2.1.2 Критерии оценивания

Отлично	Хорошо	Удовлетворительн о	Неудовлетворительно
Отлично	Хорошо	Удовлетворительно	Неудовлетворительно
Владеет основным	Владеет основным	Не полностью	Обучающийся
понятийным	понятийным	владеет понятийным	обнаруживает
аппаратом и знает	аппаратом	аппаратом	незнание большей
основные законы	химической	химической	части понятийного
химической	термодинамики,	термодинамики,	аппарата дисциплины,
термодинамики,	знает основные	знает основные	допускает ошибки в
понимает условия	законы, понимает	законы, может	формулировке
их применения и	их сущность,	привести отдельные	определений и
имеющиеся	владеет навыками	примеры	законов, искажающие
ограничения;	комплексного	использования этих	их смысл,
владеет навыками	использования	закономерностей	беспорядочно и
комплексного	законов	при решении	неуверенно излагает
использования	термодинамики и	конкретных	материал.
законов	математического	практических задач,	Не умеет решать
термодинамики, в	аппарата при	но допускает	типовые задачи по
том числе имеет	решении	неточности в	физической химии Не
целостное	стандартных задач	формулировках.	владеет базовыми
представление о	в области	Умеет решать	навыками проведения
способах	применения	типовые задачи по	химических
использования	равновесной	физической химии.	экспериментов в
математического	термодинамики;	Владеет базовыми	области физической
аппарата при	способен грамотно	навыками	химии по
решении	интерпретировать	проведения	предложенной
различных задач в	результат	химических	методике; при
области	эксперимента.		подготовке отчета
химической	Владеет	экспериментов в области физической	
		_	допускает грубые ошибки при
термодинамики;	термодинамически	химии по	оформлении протокола
Умеет решать	м подходом для	предложенной	• •
задачи	решения	методике. При	эксперимента
повышенной	практических	подготовке отчета	
СЛОЖНОСТИ ПО	задач, навыками	допускает отдельные	
физической	решения	ошибки при	
химии. Способен	численных и	оформлении	
самостоятельно	графических задач	протокола	
освоить основные	по физической	эксперимента и	
теоретические	химии; способен	обработке	
положения и	грамотно	результатов	
типовые методы	интерпретировать	эксперимента по	
решения задач из	результат	стандартной	
отдельных	эксперимента.	методике.	
разделов			
физической			
химии.			
Владеет навыками			
проведения			
химических			
экспериментов в			

области		
физической		
химии, способен		
грамотно		
интерпретировать		
результат		
эксперимента,		
подготовить отчет		
с применением		
обработки		
результатов		
анализа		
статистическими		
методами. Умеет		
обобщать		
результаты		
изучения физико-		
химических		
свойств веществ и		
предлагать их		
интерпретацию с		
учетом		
теоретического		
аппарата		
физической		
химии.		

6.2.2.2 Семестр 3, Типовые оценочные средства для курсовой работы/курсового проектирования по дисциплине

6.2.2.2.1 Описание процедуры

Курсовой проект - самостоятельная письменная работа, направленная на творческое освоение профильной профессиональной дисциплины Б1.Б.03.06 «Химические и фазовые равновесия» и выработку соответствующих обязательных профессиональных компетенций. Объем курсового проекта может достигать 15-20 страниц; время, отводимое на ее написание – от 1-2 месяцев.

Курсовой проект может иметь различную творческую направленность. При написании курсового проекта студент должен полностью раскрыть выбранную тему, соблюсти логику изложения материала, показать владение физико-химическим методом описания диаграмм состояния, умение делать обобщения и выводы.

Пример задания:

Перечень примерных тем курсового проекта:

- 1. Диаграмма равновесий в системе Cr-Ni-O,T(x),LS_1
- 2. Диаграмма равновесий в системе A-B_RegSol4,(T,x)ls.
- 3. Диаграмма равновесий в системе Al-Au.
- 4. Диаграмма равновесий в системе A-B_regsol5(T,x)vls.

- 5. Диаграмма T(x) равновесий в системе (S)-(S') Co-Ni-O.
- 6. Диаграмма равновесий в системе Cu-Zn.
- 7. Диаграмма равновесий в системе A-B,RegSol1, T(x)VLS.
- 8. Диаграмма равновесий в системе Cd-Zn(P,x)vls.
- 9. Диаграмма равновесий в системе Cd-Zn(T,x)vls.
- 10. Диаграмма равновесий в системе CdTe-ZnTe.
- 11. Диаграмма равновесий в системе A-B_regsol6(T,x)ls.
- 12. Диаграмма равновесий в системе A-B_Regsol4,(T,x)vs.
- 13. Диаграмма равновесий в системе A K-Na-CI T(x), LS.
- 14. Диаграмма равновесий в системе A-B RegSol3, T(x) VLS.
- 15. Диаграмма равновесий в системе A-B RegSol2, T(x) VLS.
- 16. Диаграмма равновесий в системе Au-Na(T,x)ls.
- 17. Диаграмма равновесий в системе Bi-Sb(T,x)ls.
- 18. Диаграмма равновесий в системе Cr-Ni-O,T(x),LS_2_

6.2.2.2 Критерии оценивания

Отлично	Хорошо	Удовлетворительн о	Неудовлетворительно
Отлично	Хорошо	Удовлетворительно	Неудовлетворительно
Умеет	Умеет	Работает с	– Неубедительны
- работать с	- работать с	научными	результаты работы с
научной и	научными	источниками,	научной и справочной
справочной	источниками,	справочной	литературой;
литературой;	справочной	литературой;	Допускает серьезные
- собирать и	литературой;	- собирает	логические ошибки,
систематизировать	- собирать и	практический	не уверенно излагает
практический	систематизировать	материал;	результаты и выводы;
материал;	практический	- допускает	- представленная
- логично и	материал;	логические ошибки	презентация не
грамотно излагать	- допускает	при изложении	полностью раскрывает
собственные	логические	умозаключений и	содержание
умозаключения и	ошибки при	выводов;	выполненной работы
выводы;	изложении	- способен создать	
- пользоваться	умозаключений и	презентацию	
глобальными	выводов,	выполненной	
информационным	самостоятельно	работы, имеются	
и ресурсами;	способен их	проблемы с	
- способен создать	исправить;	содержательностью	
содержательную	- способен создать		
презентацию	презентацию		
выполненной	выполненной		
работы	работы		

7 Основная учебная литература

1. Стромберг А. Г. Физическая химия : учеб. для вузов по хим. специальностям / А. Г. Стромберг, Д. П. Семченко, 2006. - 526.

- 2. Киселева Е. В. Сборник примеров и задач по физической химии : для высш. и сред. спец. образования хим.-технол. вузов / Е. В. Киселева, Г. С. Каретников, И. В. Кудряшов; под ред. И. В. Кудряшова, 2008. 452.
- 3. Ипполитов Е. Г. Физическая химия : учеб. для вузов по специальности 032300 "Химия" / Е. Г. Ипполитов, А. В. Артемов, В. В. Батраков, 2005. 447.
- 4. Фазовые равновесия однокомпонентных систем. Растворы : методические указания к лабораторным работам для студентов 2-го курса специальности 210602 "Наноматериалы" / Иркут. гос. техн. ун-т, 2011. 27.
- 5. Одно- и двухкомпонентные системы. Фазовые равновесия : методические указания к лабораторным работам / Иркут. нац. исслед. техн. ун-т, 2016. 40 с., включ обл.
- 6. Ниндакова Л. О. Основы химической термодинамики : учебное пособие по направлениям подготовки "Нанотехнологии и микросистемная техника", "Инфокоммуникационные системы", "Радиотехника" / Л. О. Ниндакова, Н. М. Бадырова, 2018. 91.

8 Дополнительная учебная литература и справочная

- 1. Физическая химия : [Учеб. для вузов]: В 2кн. Кн. 1. Строение вещества. Термодинамика / К. С. Краснов, Н. К. Воробьев, И. Н. Годнев, В. Н. Васильева, 2001. 511.
- 2. Физическая химия : [Учеб. для вузов]: В 2кн. Кн. 2. Электрохимия. Химическая кинетика и катализ / К. С. Краснов, Н. К. Воробьев, И. Н. Годнев, В. Н. Васильева, 2001. 318.
- 3. Эткинс П. У. Порядок и беспорядок в природе / П. У. Эткинс ; пер. с англ. Ю. Г. Рудого, 1987. 224.
- 4. Эткинс. Физическая химияРавновесная термодинамика, 2007. 494.
- 5. Морачевский А. Г. Физическая химия. Гетерогенные системы : учебное пособие для вузов по направлению подготовки магистров "Техническая физика" / А. Г. Морачевский, Е. Г. Фирсова, 2015. 184.
- 6. Морачевский А. Г. Физическая химия. Поверхностные явления и дисперсные системы : учебное пособие для вузов по направлению подготовки магистров "Техническая физика" / А. Г. Морачевский, 2015. 154.
- 7. Морачевский А. Г. Физическая химия. Термодинамика химических реакций: учебное пособие для вузов по направлению подготовки магистров "Техническая физика" / А. Г. Морачевский, Е. Г. Фирсова, 2015. 100.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/

11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем

- 1. Microsoft Office 2007 VLK (поставки 2007 и 2008)
- 2. Microsoft Office Standard 2010_RUS_ поставка 2010_(артикул 021-09683)
- 3. Microsoft Windows (XP Prof + Vista Bussines) rus VLK поставка 08_2008

12 Материально-техническое обеспечение дисциплины

- 1. Привод лаб. ПЭ-0270
- 2. Привод лаб. ПЭ-0270
- 3. Иономер АНИОН-4154 (410А)
- 4. Рефрактометр ИРФ-454 Б2М
- 5. Калориметр Эксперт-001К-2--2шт
- 6. Калориметр Эксперт-001К-2
- 7. Сушильный шкаф СНОЛЗ,5 И2М
- 8. Весы лабораторные ВК-1500
- 9. термостат жидкостный ЛАБ-ТС-01/12
- 10. Мешалка магнитная с нагревом ІКА
- 11. Мешалка магнитная с нагревом ІКА
- 12. Весы аналитические "LEKI B1604"
- 13. Спектрофотометр однолучевой сканирующий "UNICO UV-2800"
- 14. Калориметр сканирующий дифференц-ый DSC 204 F1 Phoenix