Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Структурное подразделение «Радиоэлектроники и телекоммуникационных систем»

УТВЕРЖДЕНА:

на заседании кафедры Протокол №13 от 02 июня 2025 г.

Рабочая программа дисциплины

«RUMUX»					
Hampap revives 20.02.01 Haverevive reprive a Marine guerra revives					
Направление: 28.03.01 Нанотехнологии и микросистемная техника					
Компоненты микро- и наносистемной техники					
Квалификация: Бакалавр					
Форма обучения: очная					

Документ подписан простой электронной подписью

Составитель программы: Ниндакова Лидия

Очировна

Дата подписания: 20.06.2025

Документ подписан простой электронной подписью

Утвердил: Ченский Александр Геннадьевич

Дата подписания: 21.06.2025

1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

1.1 Дисциплина «Химия» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ОПК ОС-1 Способность решать задачи	
профессиональной деятельности на основе	ОПК ОС-1.3
применения знаний математических, естественных и	OHR OC-1.5
технических наук	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
		Знать Способен применять знания о
	Способен применять знания о	теоретических основах строения
	теоретических основах строения	вещества, о зависимости
	вещества, о зависимости	химических свойств веществ от их
	химических свойств веществ от	строения
ОПК ОС-1.3	их строения; применяет	Уметь применяет химические
	химические законы для решения	законы для решения практических
	практических задач; имеет	задач
	навыки проведения простейших	Владеть имеет навыки проведения
	химических экспериментов	простейших химических
		экспериментов

2 Место дисциплины в структуре ООП

Изучение дисциплины «Химия» базируется на результатах освоения следующих дисциплин/практик: «Физика», «Математика»

Дисциплина является предшествующей для дисциплин/практик: «Кинетика гомогенных процессов», «Основы химической термодинамики», «Поверхностные явления в дисперсных системах», «Производственная практика: практика по получению профессиональных умений и опыта профессиональной деятельности», «Химия наноматериалов и наносистем», «Химические и фазовые равновесия»

3 Объем дисциплины

Объем дисциплины составляет – 4 ЗЕТ

Вид учебной работы	Трудоемкость в академических часах (Один академический час соответствует 45 минутам астрономического часа)		
	Всего	Семестр № 1	
Общая трудоемкость дисциплины	144	144	
Аудиторные занятия, в том числе:	64	64	
лекции	32	32	
лабораторные работы	16	16	
практические/семинарские занятия	16	16	
Самостоятельная работа (в т.ч.	44	44	

курсовое проектирование)		
Трудоемкость промежуточной аттестации	36	36
Вид промежуточной аттестации (итогового контроля по дисциплине)	Экзамен	Экзамен

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр № <u>1</u>

	11	Виды контактной работы				CPC		Форма		
No	Наименование раздела и темы	Лекции		J.	ЛР ПЗ(СЕМ)		CEM)		PC	Форма текущего
п/п	раздела и темы дисциплины	No	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	I. KOUTDOZG
1	2	3	4	5	6	7	8	9	10	11
1	Периодический закон и его связь со строением атома	1	2	6	2	1, 2	4	1	10	Устный опрос
2	Типы химической связи.	2	2	7	2	3	3	4	12	Устный опрос
3	Ковалентная связь. Природа ковалентной связи	3	4							Устный опрос
4	Растворы неэлектролитов. Способы выражения концентрации.	4	2	1	2	4, 5	6	3	12	Решение задач
5	Сильные и слабые электролиты. Гидролиз солей. Электрохимическ ие свойства растворов. Электродные потенциалы.	5	4	3, 4	5	6	3	2	10	Контрольн ая работа
6	Водород. Вода. Пероксид водорода.	6	2	2	2					Устный опрос
7	Элементы 17 группы периодической системы элементов Д.И. Менделеева. Галогены. Физические и химические свойства.	7	2							Устный опрос
8	Элементы 16 группы периодической системы элементов Д.И.	8	2							Устный опрос

	Могито тооро					1				
	Менделеева. Физические и									
	химические									
	свойства.									
	Элементы 15									
	группы									
	периодической									
	системы									Устный
9	элементов Д.И.	9	2							
	Менделеева.									опрос
	Физические и									
	химические									
	свойства.									
	Элементы 14									
	группы									
	периодической									
	системы									
	элементов Д.И.									
10	Менделеева.	10	2							Устный
10	Физические и	10	_							опрос
	химические									
	свойства.									
	Изменение									
	свойств в группе.									
	Кислоты.									
	Определение									
11	кислот в рамках	11								Устный
11	теорий С.	11	2							опрос
	Аррениуса, Й.									1
	Бренстеда и Дж.									
	Льюиса.									
	Основания и			_						Устный
12	соли, их	12	2	5	3					опрос
	классификация.									5poc
	Химическая									
	термодинамика.									Устный
13	Основные	13	2							опрос
	понятия и									Olipoc
	определения.							<u></u>		
	Тепловые									V.c
14	эффекты. Закон	14	2							Устный
	Гесса									опрос
	Промежуточная								2.0	2
	аттестация								36	Экзамен
	Всего		32		16		16		80	
			32		16		16		80	

4.2 Краткое содержание разделов и тем занятий

Семестр № 1

No	Тема	Краткое содержание	
1	Периодический закон и	Основные понятия химии. Развитие	
	его связь со строением	представлений о строении атома. Основные	
	атома	стехиометрические законы химии. Атомно-	
		молекулярная теория. Химическая атомистика.	
		Современное состояние периодического закона.	
		Периодическая система с точки зрения строения	
		атома (радиусы атомов и ионов, энергия и	
		потенциал ионизации, константа экранирования,	

		сродство к электрону, электроотрицательность,
		степень окисления и валентность).
2	Типы химической	Типы химической связи. Экспериментальные
	связи.	характеристики химической связи (длина связи,
		направленность связи, энергия связи).
		Количественная оценка полярности связи.
		Дипольный момент. Понятие об ионной связи.
		Теория и энергетика ионной связи.
		Ненаправленность и ненасыщенность ионной
		СВЯЗИ.
3	Ковалентная связь.	Направленность и насыщенность ковалентной
	Природа ковалентной	связи. Донорно-акцепторный механизм
	СВЯЗИ	образования ковалентной связи. Поляризация
		ковалентной связи. Концепция гибридизации.
		Кратность связи, s- и р-связи.
		Квантовомеханические методы описания
		химической связи. Метод валентных связей.
		Валентность в рамках МВС.
4	Растворы	Растворы как фаза переменного состава. Способы
	неэлектролитов.	выражения концентрации. Термодинамика и
	Способы выражения	кинетика процессарастворения. Идеальные и
	концентрации.	реальные растворы. Растворы неэлектролитов.
		Давление насыщенного пара бинарных растворов.
		Кипение и отвердевание растворов. Законы Рауля.
		Явление осмоса. Закон Вант-Гоффа. Методы
		определения молекулярных масс растворенных
		веществ.
5	Сильные и слабые	Степень электролитической диссоциации. Закон
	электролиты. Гидролиз	разведения Оствальда. Активность и коэффициент
	солей.	активности. Вода как важнейший растворитель.
	Электрохимические	Ионное произведение воды. Водородный
	свойства растворов.	показатель. Произведение растворимости.
	Электродные	Гидролиз солей. Теории кислот и оснований.
	потенциалы.	Электрохимические свойства растворов. Окислительно-восстановительные свойства.
		Окислительно-восстановительные потенциалы. Электродные потенциалы. Уравнение Нернста.
		Понятие о гальваническом элементе. Химические
		источники тока.
6	Водород. Вода.	Особенности строения атома водорода. Изотопы
U	Пероксид водорода.	водорода. Распространенность. Размеры атомов.
	перокенд водорода.	Молекулярный и атомарный водород, физические
		и химические свойства. Вода как важнейшее
		соединение водорода. Роль воды в биосфере и в
		геосфере. Строение молекулы воды. Ассоциация
		молекул воды за счет водородных связей.
		Физические и химические свойства воды.
		Кристаллогидраты.
7	Элементы 17 группы	Изменение свойств в группе. Положение в
	периодической системы	периодической системе. Размеры атомов,
	элементов Д.И.	характерные валентные состояния. Изменение
	1 1	• • •

	Манталара Балалан	
	Менделеева. Галогены.	электроотрицательности и химической активности
	Физические и	в ряду галогенов. Строение молекул галогенов.
	химические свойства.	Межмолекулярные взаимодействия в ряду F-Cl-Br-
		I и агрегатное состояние галогенов. Химические
		свойства галогенов, взаимодействие с металлами и
		неметаллами, применение. Галогеноводороды, их
		получение, физические и химические свойства.
8	Элементы 16 группы	Подгруппа серы. Общая характеристика элементов
	периодической системы	подгруппы серы. Положение в периодической
	элементов Д.И.	системе, строение атомов, распространенность.
	Менделеева.	Характерные валентные состояния. Физические
	Физические и	свойства свободной серы, ее аллотропные и
	химические свойства.	полиморфные модификации. Химические свойства
		серы. Соединения с металлами и неметаллами.
		Получение, строение и свойства сероводорода.
		Сульфиды, гидросульфиды, полисульфиды.
		Кислородные соединения серы.
9	Элементы 15 группы	
9	периодической системы	Подгруппа азота. Строение атома, физические и химические свойства молекулярного азота.
	1 * ''	
	элементов Д.И.	Лабораторные и промышленные способы
	Менделеева.	получения и применение свободного азота.
	Физические и	Аммиак. Соли аммония, гидразин.
	химические свойства.	Азотистоводородная кислота и ее соли.
		Кислородные соединения азота. Азотистый
		ангидрид (оксид азота (III)) и азотный ангидрид:
		строение молекул, физические и химические
		свойства, получение. Азотистая и азотная кислота:
		получение, строение, свойства. Фосфор и
		подгруппа мышьяка. Формы нахождения фосфора
		в природе. Валентные состояния. Аллотропные
		модификации фосфора, их физические и
		химические свойства. Гидриды фосфора. Соли
		фосфония, Фосфиды металлов (получение,
		свойства). Галогениды и оксигалогениды фосфора.
		Кислородные соединения фосфора. Оксид
		фосфора (III), фосфористая кислота. Фосфиты.
		Фосфорноватистая кислота, гипофосфиты,
		фосфорноватая кислота, ее соли. Оксид фосфора
		(V).
10	Элементы 14 группы	Углерод. Особенности строения атома.
	периодической системы	Многообразие соединений углерода, его
	элементов Д.И.	валентные формы. Кристаллическая структура
	Менделеева.	алмаза и графита. Искусственные алмазы. Карбин.
	Физические и	Фуллерены. Применение алмазов, графита, сажи.
	химические свойства.	Активированный уголь как поглотитель газов,
	Изменение свойств в	паров, растворенных веществ. Химические
	группе.	свойства углерода. Соединения с металлами и
	i pyrinic.	неметаллами. Галогениды углерода. Кислородные
		соединения углерода. Оксид углерода (II):
11		строение молекулы, получение и свойства.
11	Кислоты. Определение	Классификация кислот. Водородный показатель.

	кислот в рамках теорий С. Аррениуса, Й. Бренстеда и Дж. Льюиса.	Определение кислот в рамках теорий С. Аррениуса, Й. Бренстеда и Дж. Льюиса. Примеры кислот и оснований. Протолитические равновесия. Кислоты, основания, амфолиты (примеры). Автопротолиз. Ионное произведение воды. Влияние температуры на ионное произведение воды. рН.
12	Основания и соли, их классификация.	Основания, классификация оснований. Способы получения, химические свойства. Определение оснований в рамках теорий С. Аррениуса, Й. Бренстеда и Дж. Льюиса. Соли, их классификация. Способы получения и химические свойства солей.
13	Химическая термодинамика. Основные понятия и определения.	Система, термодинамические процессы, переменные и функции. Внутренняя энергия системы. Теплота и работа. Первый закон термодинамики
14	Тепловые эффекты. Закон Гесса	Стандартные условия. Стандартные энтальпии. Применение закона Гесса к расчету тепловых эффектовВторой закон (начало) термодинамики, его формулировки. Энтропия как функция состояния. Фундаментальное уравнение термодинамики.

4.3 Перечень лабораторных работ

Семестр № 1

Nº	Наименование лабораторной работы	Кол-во академических часов
1	Приготовление растворов и определение их концентрации	2
2	Установление формулы кристаллогидрата	2
3	Буферные растворы и гидролиз соли	3
4	Окислительно-восстановительные реакции	2
5	Распознавание неизвестных веществ	3
6	Определение жесткости воды	2
7	Ионные реакции	2

4.4 Перечень практических занятий

Семестр № $\underline{1}$

Nº	Темы практических (семинарских) занятий	Кол-во академических часов
1	Периодическая система с точки зрения строения атома (радиусы атомов и ионов, энергия и потенциал ионизации, Сродство к электрону, электроотрицательность, степень окисления и валентность). Основные понятия химии. Количественные соотношения.	2
2	Строение атома. Периодичность свойств	2
	элементов. Понятие о квантовых числах	

	электрона в атоме, спин. Многоэлектронные	
	атомы. Принцип минимума энергии, принцип	
	Паули, правило Хунда (принцип максимальной	
	мультиплетности). Электронные конфигурации	
	атомов в их основных состояниях.	
	Химическая связь, ее типы. Дипольный момент.	
	Понятие об ионной связи. Ненаправленность и	
3	ненасыщенность ионной связи. Природа	3
3	ковалентной связи. Квантово-механические	J
	методы описания химической связи. Методы	
	молекулярных орбиталей и валентных связей.	
	Растворы как фаза переменного состава.	
	Физико-химические свойства растворов.	
	Химическая теория растворов Д.И. Менделеева.	
	Способы выражения концентрации. Растворы	
4	неэлектролитов. Давление насыщенного пара	3
	бинарных растворов. Законы Рауля. Явление	
	осмоса. Закон Вант-Гоффа. Методы	
	определения молекулярных масс растворенных	
	веществ.	
	Растворы неэлектролитов. Давление	
5	насыщенного пара бинарных растворов. Законы	3
	Рауля. Явление осмоса. Закон Вант-Гоффа.	
	Растворы электролитов. Изотонический	
	коэффициент. Сильные и слабые электролиты.	
	Равновесия в растворах слабых электролитов.	
6	Закон разведения Оствальда. Вода. Ионное	3
	произведение воды. Водородный показатель.	
	Произведение растворимости. Гидролиз солей	
	F	

4.5 Самостоятельная работа

Семестр № 1

N₂	Вид СРС	Кол-во академических часов
1	Оформление отчетов по лабораторным и практическим работам	10
2	Подготовка к практическим занятиям	10
3	Подготовка к практическим занятиям (лабораторным работам)	12
4	Проработка разделов теоретического материала	12

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: дискуссия

- 5 Перечень учебно-методического обеспечения дисциплины
- 5.1 Методические указания для обучающихся по освоению дисциплины
- 5.1.1 Методические указания для обучающихся по практическим занятиям

Для выполнения программы семинарских занятий требуется ответить на вопросы и решить задачи:

Занятие № 1. Современное состояние периодического закона. Периодическая система с точки зрения строения атома (радиусы атомов и ионов, энергия и потенциал ионизации, Сродство к электрону, электроотрицательность, степень окисления и валентность).

Основные понятия химии. Количественные соотношения

Вопросы:

- 1. Какие факты доказывают сложность строения атома?
- 2. Из каких частиц состоит атомное ядро?
- 3. Атомная единица массы.
- 4. Дефект массы.
- 5. Массы протона и нейтрона составляют соответственно 1.00727647 и 1.00866501 а.е.м. Вычислите тепловой эффект реакции (кДж/моль) образования изотопа углерода 12С из нуклонов?
- 6. Тепловой эффект реакции образования изотопа кислорода 16О из нуклонов составляет 12.3.109 кДж/моль. Чему равна масса этого изотопа в а.е.м.?
- 7. Во сколько раз (приблизительно) различаются размеры ядра и атома?
- 8. Что такое ангстрем? Электрон-вольт?
- 9. На каком энергетическом уровне (1-ом или 2-ом) энергия электрона больше? На каком из этих уровней прочность связи электрона с ядром больше? Задачи:
- 1.1 Расчеты с использованием данных о составе и состоянии вещества

Химическое вещество имеет вполне определенный качественный и количественный состав. В задачах обычно требуется определить состав, т.е. определить содержание элементов в веществе.

Пример 1. В руде содержится 58% оксида марганца (IV). Каково содержание марганца в руде, если в MnO2 оно составляет 63,2%.

Решение. Массовая доля марганца в руде равна 0,58*0,632 = 0,366, т. е. 36,6%.

Пример 2. Чему равны массовые доли (%) изотопов неона 20Ne и 22Ne в природном газе, имеющем среднюю относительную атомную массу 20,2?

Решение. Примем за x число атомов 20Ne в каждых 100 атомах природного неона, тогда число атомов 22Ne будет (100 - x). Масса атомов 20Ne равна 20x, а масса атомов 22Ne = 22-(100-x);

20x + 22(100-x) = 20,2 100.

Из уравнения находим x = 90 (атомов 20Ne) и 100 - 90 = 10 (атомов 22Ne). Таким образом, массовая доля 20Ne составляет 90%, а массовая доля 22Ne-10%.

Задача 1. Смесь медного купороса CuSO4 5H2O и кристаллов соды Na2CO3 10H2O содержит 38% связанной воды. Рассчитайте, чему равны массовые доли (%) каждого из веществ смеси.

Задача 2. В смеси газообразных СО и СО2 массовое отношение С: О равно 1:2.

- а). Рассчитайте массовые доли газов в процентах.
- 6). Рассчитайте состав смеси по объему в процентах.
- в) Укажите соотношения C : O, при которых оба газа одновременно не могут присутствовать.

Задача 4. Каково процентное содержание изотопов 35Cl и 37Cl в природном хлоре, имеющем относительную молекулярную массу 70,90?

Задача 5 Кристаллогидрат сульфата марганца (II) содержит 24,66% марганца. Какую формулу имеет кристаллогидрат?

1.2. Расчеты с применением газовых законов

Пример 1. Углекислый газ объемом 1 л при нормальных условиях имеет массу 1,977 г. Какой реальный объем занимает моль этого газа (при н. у.)? Ответ поясните.

Решение. Молярная масса М (CO2) = 44 г/моль, тогда объем моля 44/1,977 = 22,12 (л). Эта величина меньше принятой для идеальных газов (22,4 л). Уменьшение объема связано с возрастанием взаимодействия между молекулами CO2, т. е. отклонением от идеальности.

Какой объем (при н. у.) занимает 0,5 моль кислорода?

Решение Моль любого газа занимает объем (при н. у.) 22,4 л; 0,5 моль О2 занимает объем $22,4\,0,5=\,11,2\,(\pi)$.

Какой объем занимает водород, содержащий 18-1023 молекул (при н. у.)? Решение. Число молекул водорода, равное 6,02-1023 (число Авогадро), при н. у. занимает объем 22,4 л (1 моль); тогда

Пример 2. Чему равна молярная масса оксида серы(IV), если плотность этого газа по водороду равна 32?

Решение. Молярная масса оксида серы(IV) : M(SO2) = 32.2 = 64 (г/моль).

Задача 1. Какой объем занимают 68 г аммиака при давлении 2 атм и температуре 100оС?

Задача 2. В замкнутом сосуде емкостью 1,5 л находится смесь сероводорода с избытком кислорода при температуре 27оС и давлении 623,2 мм рт. ст. Найдите суммарное количество веществ в сосуде.

Задача З. Газообразный хлор массой 0,01 г, находящийся в запаянной ампуле объемом 10 смЗ, нагревают от 0 до 273оС. Чему равно начальное давление хлора при 0оС и при 273оС?

Задача 4. Чему равен объем, который занимают 10 г оксида углерода (II) при температуре 15оС и давлении 790 мм рт. ст.?

Занятие № 2.

Строение атома. Периодичность свойств элементов. Понятие о квантовых числах электрона в атоме, спин. Многоэлектронные атомы. Принцип минимума энергии, принцип Паули, правило Хунда (принцип максимальной мультиплетности). Электронные конфигурации атомов в их основных состояниях. Вопросы;

- 1. Что такое постоянная Планка? Вычислите скорость электрона (по Бору) на первой орбите в атоме водорода.
- 2. Учитывая принцип неопределенности Гейзенберга ($\Delta px.\Delta x \ge \hbar$) оцените результат, полученный в предыдущем задании.
- 3. Вычислите энергию кванта электромагнитного излучения при переходе с третьего уровня на первый? С 5-го на второй? Из бесконечности на 1-ый?
- 4. Вычислите длины волн электромагнитного излучения, соответствующих электронным переходам, указанным в вопросе 11. В какой части спектра лежат эти волны?
- 5. Вычислите длину волны, соответствующей электрону, движущемуся по первой боровской орбите в атоме водорода? (Воспользуйтесь уравнениями 1 и 7). То же для 2-ой и 3-ей орбит.
- 6. Рассчитайте длину волны, соответствующей спринтеру массой 70 кг, бегущему со скоростью 10 м/с.
- 7. Что такое волновая функция? Плотность вероятности? Радиальная плотность вероятности?
- 8. В чем разница между «орбитой» и «орбиталью»? Что такое граничная поверхность?
- 9. Вычислите значения ψ , ψ 2, $4\pi R2\psi$ 2 для 1s-орбитали на расстояниях 0.25ao, 0.5 ao, 3ao, 10ao от протона.
- 10. В какой из точек (1, 2, 3), указанных на рис.9, вероятность нахождения электрона (плотность вероятности) наибольшая? Наименьшая?
- 11. На каком расстоянии от ядра (1.2 или 3) из указанных на рисунке, вероятность нахождения электрона (радиальная плотность вероятности) наибольшая? Наименьшая? Занятие N = 3

Химическая связь, ее типы. Дипольный момент. Понятие об ионной связи. Ненаправленность и ненасыщенность ионной связи. Природа ковалентной связи. Квантовомеханические методы описания химической связи. Методы молекулярных орбиталей и валентных связей.

Вопросы для самоконтроля:

Условие образования химической связи, валентность и валентные электроны.

- 2. Неполярная и полярная ковалентная связь, электроотрицательность как признак полярности, пояснить на примерах.
- 3. Донорно-акцепторный механизм образования ковалентной связи, пояснить на примере, указать донор и акцептор.
- 4. Свойства ковалентной связи: длина, энергия, насыщаемость и направленность.
- 5. Гибридизация орбиталей, привести примеры линейной, плоской и объемной форм молекул как следствие гибридизации орбиталей.
- 6. Кратные связи, условия образования, пояснить на примере. Что такое σ , π и δ связи, их свойства.
- 7. Ионная связь как предельный случай полярной ковалентной связи, ее свойства, привести примеры.
- 8. Водородная и металлические связи как разновидности ионной связи, их природа и свойства. Привести примеры.
- 9. Сколько неспаренных электронов имеет хлор в нормальном и возбужденном состояниях? Распределите эти электроны по квантовым ячейкам. Чему равна валентность хлора, обусловленная неспаренными электронами? 10.Какая из молекул: HCl, HBr или HI имеет наибольший дипольный момент? Почему? Составить ______ электронную формулу молекулы аммиака.
- 11.Какие электроны атома бора участвуют в образовании ковалентных связей? Почему форма молекулы BF3 плоская?
- 12.Составьте электронные формулы молекул Cl2, H2S, CCl4. В каких из этих молекул связь является полярной и почему? Почему молекула H2S имеет угловую форму? Занятие № 4

Растворы как фаза переменного состава. Физико-химические свойства растворов. Химическая теория растворов Д.И. Менделеева. Способы выражения концентрации. Растворы неэлектролитов. Давление насыщенного пара бинарных растворов. Законы Рауля. Явление осмоса. Закон Вант-Гоффа. Методы определения молекулярных масс растворенных веществ.

2.1 Растворы

При решении задач, связанных с определением концентрации растворов, используется понятие о массовой или мольной доле растворенного вещества в растворе.

Массовая доля растворенного вещества - это безразмерная физическая величина, равная отношению массы растворенного вещества к обшей массе раствора, т. е.

массовая доля растворенного вещества A,m(A)-масса растворенного вещества A и т - общая масса раствора.

Массовую долю (А) можно выражать в долях единицы или в процентах (проценты - это не размерность!). Если массовая доля соляной кислоты равна 0,08 (8%), это означает, что в растворе соляной кислоты массой $100 \, \Gamma$ содержится HC1 массой $8 \, \Gamma$ и вода массой $100 \, - 8 \, = 92 \, (\Gamma)$.

В химической практике часто используется молярная концентрация раствора (молярность) - величина, равная отношению количества растворенного вещества (моль) к объему раствора, выраженному в литрах. Единицей молярной концентрации является моль/л. Раствор, в 1 л которого содержится 1 моль растворенного вещества, называется одномолярным.

Пример 1. 500 мл раствора содержат 20 г NaOH. Найдите молярную концентрацию

раствора.

Решение. $M(NaOH) = 40 \ г/моль; 20 \ г NaOH составляет <math>20/40 = 0,5 \ (моль) \ NaOH$. Далее составляем пропорцию:

в 500 мл раствора содержится 0,5 моль NaOH,

в 1000 мл раствора содержится х моль NaOH,

тогда x = (1000*0,5)/500 = 1 (моль)

т. е. концентрация раствора 1 моль/л (или 1М).

Пример 2. Кристаллогидрат CoCl2*.6H2O массой 476 г растворили в воде, при этом массовая доля хлорида кобальта(II) в растворе оказалась равной 13,15%. Рассчитайте массу воды, взятую для растворения кристаллогидрата.

Решение. M(CoCl2) = 130; M(CoCl2.6H2O) = 238, т. е. 476 г. CoCl2*6H2O составляют 2 моль, в растворе, соответственно, будет находиться 2 моль CoCl2*(2.130 = 260 г).

В растворе массой 100 г содержится 13,15 г CoCl2,

В растворе массой х г содержится 260 г CoCl2,

следовательно, масса воды, взятая для растворения кристаллогидрата, равна 1976 - 476 (масса кристаллогидрата) = 1500 (г).

Контрольные задачи

Задача 1. Для приготовления раствора взяли навеску вещества массой тг и воду. После растворения получен раствор объемом Vcм3, плотностью р г/см3. Предложите формулу для расчета в общем виде массовой доли исходного вещества в полученном растворе %. Задача 2. Сколько (г) необходимо взять CoCl2 6H2O и воды для приготовления 180 г раствора хлорида кобальта с массовой долей 5%?

Задача 3. Растворимость Na2CO3 при температуре 20оС равна 21,8 г в 100 г. воды. Чему равна массовая доля вещества (%) в насыщенном растворе?

Задача 4. В воде растворили 5 г медного купороса CuSO4.5H2O и довели объем раствора до 500 см3. Какое количество сульфата меди содержится в полученном растворе? Задача 5. При растворении 5,38 г кристаллогидрата сульфата цинка ZnSO4. хH2O в 92 см3 воды получен раствор с массовой долей сульфата цинка 0,0331. Установите состав кристаллогидрата (величину х).

Задача 6. Химическим анализом было установлено, что в кристаллогидрате, полученном кристаллизацией хлорида лития из раствора, содержится 7,19% лития. Какова формула этого кристаллогидрата?

Задача 7. Сколько граммов кристаллогидрата FeSO4 7H2O необходимо взять для приготовления 10 кг раствора сульфата железа (II) с массовой долей вещества 5%? Задача 8. Сколько граммов хлорида натрия нужно растворить в 100 г 15,5% раствора NaCl, чтобы его концентрация стала равной 17,5%?

Задача 9. Определить, сколько граммов 10%-го раствора оксида серы(VI) в чистой серной кислоте и 60%-го раствора серной кислоты необходимо для приготовления 480 г 90%-го раствора кислоты.

Задача 10. Смешали 1 л воды с 250 смЗ раствора азотной кислоты (массовая доля 50%, плотность 1,3 г/смЗ). Какова массовая доля кислоты (%) в полученном таким образом

Занятие № 5

Растворы неэлектролитов. Давление насыщенного пара бинарных растворов. Законы Рауля. Явление осмоса. Закон Вант-Гоффа. Методы определения молекулярных масс растворенных веществ.

Занятие № 6

Растворы электролитов. Изотонический коэффициент. Сильные и слабые электролиты. Равновесия в растворах слабых электролитов. Закон разведения Оствальда. Вода. Ионное произведение воды. Водородный показатель. Произведение растворимости. Гидролиз солей. Электрохимические свойства растворов.

Решение задач

Пример 1. Вычислите pH 0.01 M раствора аммиака ($K_{\rm A} = 2.10$ -5).

K = 2C; = (K/C)1/2; K = 2C/(1-)

=(2.10-5/0.01)0.5 = (2*10-3)0.5 = 4.5*10-2

pH = -lg[H+] = -lg10-14/[OH-] = -lg10-14/ *0.01 = -lg10-14/4.5*10-2*0.01 = -lg2.2*10-11 = -lg2.2*10-11 = 11-0.35 = 10.65

Пример 2. Оцените степень диссоциации в 0.005 M и 0.05 M растворах сернистой кислоты (Кд = 1.7.10-2).

0.005 M: K = 2C/(1--); K *(1--) = 2C; 2C + K-K =0; = -K (K2+4KC) / 2C.

1 = -1.7.10-2* + (2.89*10-4+4*1.7.10-2*0.005)0,5 / 2*0.005 = -1.7.10-2* + (2.89*10-4+3.4*10-4) 0,5/0.01 = (-1.7.10-2* + 2.5*10-2)/0.01 = 0.8

2 = -1.7.10-2* - (2.89*10-4+4*1.7.10-2*0.005)0,5 / 2*0.005 = -1.7.10-2* - (2.89*10-4+3.4*10-4) 0,5/0.01 = (-1.7.10-2* - 2.5*10-2)/0.01 = 2.2

0.05 M: 1 = -1.7.10-2* + (36.9*10-4)0,5 / 2*0.05 = -1.7.10-2* + (6.07*10-2)/0.1 = 0.442 = -1.7.10-2* - (2.89*10-4+34*.10-4)0,5 / 2*0.05 = -1.7.10-2* - (6.07*10-2)/0.1 = -0.78

Ответ: 0,8 и 0,44

Задача 1. Рассчитайте концентрацию раствора FeCl3, pH которого равен 3, учитывая только первую ступень гидролиза.

Задача 2. Рассчитайте концентрацию азотистой кислоты в растворе с рН 3.

Задача З. Определите водородный показатель рН в 0.006 М р-ре серной кислоты при 25оС

Задача 4. Рассчитайте степень гидролиза и pH 10-3 M p-ра Al2(SO4)3

Задача 5. Определите водородный показатель рН указанных растворов сильной кислоты НА: 0.023 M, 0.0078 при 25оС

Задача 6. Рассчитайте концентрацию основания Ba(OH)2 в растворе с pH 11.3, коэффициент активности f = 0.965.

Занятие № 7

Электрохимические свойства растворов. Окислительно-восстановительные свойства и реакции. Электродные потенциалы. Ряд напряжений. Уравнение Нернста. Окислительно-восстановительные потенциалы. Понятие о гальваническом элементе. Химические источники тока.

Пример 1. Стандартный электродный потенциал пары Cu2+/Cu равен +0.337B, а пары Cu+/Cu +0.521B. Рассчитайте стандартный электродный потенциал пары Cu2+/Cu+. Решение:

Рассчитаем энергии Гиббса приведенных полуреакций:

 $Cu2++2e-=Cu\ \Delta G0=-nE0F=-2\cdot 0.337*96485=-65031$ Дж/ моль

 $Cu++e-=Cu \Delta G0=-nE0F=-1\cdot 0.521*96485=-50269Дж/ моль$

Вычитая, получаем

 $Cu2++e-=Cu+\Delta G^0=nE(Cu)^0(2+/)Cu^0+0^*96485=-14762$ Дж/моль откуда

E ($[Cu] \land (2+/) [Cu] \land +) \land 0 = 0.153 B$

Otbet: E_($[Cu] ^(2+/) [Cu] ^+)^0 = 0.153 B$

Пример 2. Рассчитайте ЭДС гальванического элемента

Cu | 0.01M CuSO4 || 0.1M CuSO4 | Cu

при 298 K и запишите уравнение реакции результирующего процесса. Стандартный электродный потенциал пары Cu2+/Cu равен +0.337B.

Решение:

Рассчитаем потенциалы анода и катода:

 $E_A=E_{(Cu)}^{(Cu)} (2+/) (Cu)^{+}(0.0592/2 lg 0.01 = 0.2778 B)$

 $E_K=E_([Cu] ^(2+/) [Cu] ^+)^0+ 0.0592/2 lg0.1 = 0.3074 B$

ЭЛС равна $E_K-E_A = 0.0296 B$

Гальванические элементы, в которых разность потенциалов создается за счет различных

концентраций окисленной или восстановленной формы в прианодном и прикатодном пространстве, называют концентрационными.

Задача 1. Известны стандартные потенциалы следующих полуреакций

$$Ag+ + e- = Ag E0 = 0.7792B$$

$$AgBr + e- = Ag + Br- E0 = 0.0732B$$

Рассчитайте растворимость бромида серебра в воде при 298К.

Задача 2. Известны стандартные электродные потенциалы следующих процессов:

$$Co3+ + 3e \rightarrow Co$$
 E10 = + 0.330 B,

$$Co2+ + 2e \rightarrow Co$$
 $E2o = -0.277B.$

Рассчитайте стандартный электродный потенциал процесса Со3+ + е → Со2+.

Задача 3. Представьте схематически электрохимическую цепь, в которой самопроизвольно протекает реакция:

$$Cr2O72 - + 6Fe2 + + 14H + = 2Cr3 + + 6Fe3 + + 7H2O$$
.

Вычислите по справочным данным при 25оС стандартную ЭДС цепи, стандартную энергию Гиббса Δ Go и константу равновесия Ка реакции.

Задача 4. Найдите потенциал водородного электрода при рH = 7, температуре 36.60 С и давлении водорода 1 атм. Как изменится потенциал этого электрода, если давление водорода увеличить до 10 атм?

Задача 5. Стандартный электродный потенциал хлорсеребряного электрода при 25°С и 1 атм равен +0.2224 В. Запишите схему электрохимической цепи, ЭДС которой равна стандартному электродному потенциалу этого электрода. Вычислите электродный потенциал электрода при давлении 1 бар

5.1.2 Методические указания для обучающихся по лабораторным работам:

Методические указания для обучающихся по лабораторным работам:

При выполнении лабораторных работ применяются следующие методические указания: Методические указания к выполнению лабораторных работ по курсу общей химии для студентов Физико-технического института ИрГТУ/ сост. С.А. Скорникова.- Иркутск: Издво ИрГТУ, 2014.- 54 с

5.1.3 Методические указания для обучающихся по самостоятельной работе:

Методические указания для обучающихся по самостоятельной работе:

Самостоятельная работа является неотъемлемым элементом учебного процесса, одним из основных методов освоения учебных дисциплин и овладения навыками профессиональной и научно-исследовательской деятельности. При самостоятельной работе достигается конкретное усвоение учебного материала, развиваются теоретические способности, столь важные для современной подготовки бакалавра.

Целью самостоятельной работы студентов является неаудиторное изучение студентами свойств нанокластеров, наноструктур и наноматериалов.

Самостоятельная работа включает себя изучение лекционного материала с привлечением учебных пособий, самостоятельное изучение некоторых разделов, подготовку к контрольным работам, подготовку к практическим занятиям, оформление отчетов по лабораторным и практическим работам, подготовку к сдаче и защите отчетов.

5.1.3.1 Вид СРС «Подготовка к практическим занятиям» имеет целью закрепление знаний о фундаментальных законах природы, которые находят практическое применение в различных отраслях науки и техники, развитие навыков по логическому осмыслению и изложению полученных знаний, путем подготовки к коллоквиумам и решения домашних заданий по разделам дисциплины.

5.1.3.2 Подготовка к практическим занятиям заключается в самостоятельном решении

задач по темам и в работе с учебниками и дополнительной литературой. При работе с литературой следует вести запись основных положений (конспектировать отдельные разделы, выписывать новые термины и раскрывать их содержание)

- 5.1.3.3 Проработка отдельных разделов теоретического курса заключается в изучении теоретического материала с применением
- собственных конспектов лекций
- основных источников теоретической информации по дисциплине
- 5.1.3.4 Подготовка к контрольной работе. Контрольная работа является одной из форм организации учебного процесса, основной частью самостоятельной работы студентов и предусматривает индивидуальную работу студентов с учебной литературой и первоисточниками. Целью контрольной работы является проверка умений применять полученные знания для решения задач определенного типа по теме или разделу для выяснения степени усвоения изучаемого материала.

Подготовка заключается в выполнении следующих рекомендаций:

- 1. Составить список теоретических вопросов, по которым будет проводиться контрольная работа.
- 2. Выделить основные понятия, определения, закономерности.
- 3. Выучить формулы и определения

Требования к оформлению контрольной работы:

Работа должна быть аккуратно оформлена, в решении задачи указаны исходные данные и оформлен полный ответ. При решении задач требуется привести весь ход решения и математические преобразования Последовательность решения не должна оставлять сомнений в авторстве. Каждая страница должна иметь поля для замечаний преподавателя На титульном листе работы должны быть указаны:

- 1. Название кафедры
- 2. Название дисциплины
- 3. Название работы
- 4. Номер варианта контрольной работы
- 5. Номера всех заданий данного варианта.
- 6. ФИО студента,
- 7. Название группы

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 семестр 1 | Контрольная работа

Описание процедуры.

Тема (раздел): Сильные и слабые электролиты. Гидролиз солей. Электрохимические свойства растворов. Электродные потенциалы.

Описание процедуры: Студентам выдается комплект контрольных заданий по вариантам (4).

Пример варианта:

- 1. Определите pH (pH<7 или pH>7) в растворах следующих солей: NH4Cl, Al2S3.
- 2. Укажите коэффициенты перед исходными веществами, расставленные на основании электронных уравнений:

Mg + H2SO4 (конц) →

3. Вычислите ЭДС меднокадмиевого гальванического элемента, в котором [Cd2+] = 0,1 моль/л, а [Cu2+] = 0,01 моль/л. E0 Cu2+/Cu = 0,34 B; E0Cd2+/Cd = -0,403 B.

Критерии оценивания.

Отлично

- уровень выполнения требований значительно выше среднего: отсутствие ошибок, не более одного недочёта; логичность и полнота изложения Хорошо
- уровень выполнения требований выше среднего: полнота и логичность в решении задач; незначительные нарушения логики в решениях; отдельные неточности Удовлетворительно
- достаточный уровень выполнения требований; отдельные нарушения логики в решении задач; неполнота раскрытия вопроса, допущены более 2 ошибок или более 3-х недочетов Неудовлетворительно
- допущены существенные ошибки, указывающие на отсутствие знаний в данной области

6.1.2 семестр 1 | Устный опрос

Описание процедуры.

- 6.1 Оценочные средства для проведения текущего контроля
- 6.1.1 Входной контроль (ВК)

Описание процедуры: входной контроль знаний студентов перед изучением курса проводится в виде устного собеседования или теста. Для усвоения курса необходимы знания в области математики, физики, общей и неорганической химии, физической химии.

Устный опрос

Описание процедуры:

Знание лекционного материала проверяется на лекциях и практических занятиях во время устного опроса по конкретной теме занятия. Учитывается посещаемость лекций, наличие конспекта, поведение на лекции

Вопросы для контроля:

- 1. Ковалентная связь. Виды ковалентной связи
- 2. Свойства ковалентной связи: длина, направленность, насыщаемость, энергия связи.
- 3. Гибридизация разнородных орбиталей внешнего слоя
- 4. Образование кратных связей. и π-связи
- 5. Ионная связь, кристаллическая решетка
- 6. Водородная связь
- 7. Металлическая связь
- 2. Что такое растворы? Каков механизм процесса растворения?
- 3. Что такое растворимость, коэффициент растворимости?
- 4. По каким признакам классифицируются растворы твердых веществ?
- 5. От чего зависит растворимость газов в жидкости? Закон Генри.
- 6. Способы выражения концентраций, применяемые для выражения состава
- 7. раствора?
- 8. Какие вещества называются кристаллогидратами? Приведите примеры.
- 9. Для чего применяются в химическом эксперименте тигель, эксикатор, песчаная баня?
- 10. Какова формула соединения водорода с кислородом, если мольное соотношение H:O=1:1, а плотность его газа по водороду равна 17?
- 11. Определите формулу кристаллической соды, если при нагревании данной соли массой 286 г образовался карбонат натрия массой 106 г?
- 12. Что называют гидролизом солей? Каковы причины протекания гидролиза?
- 13. На какие типы делятся соли по их отношению к воде? Приведите примеры.

- 14. Как изменяется среда раствора в результате гидролиза?
- 15. В каком случае гидролиз солей протекает ступенчато? Чем определяется
- 16. количество ступеней процесса гидролиза?
- 17. Что характеризует степень гидролиза? Какие факторы влияют на степень гидролиза и почему?
- 18. Почему совместный гидролиз солей является необратимым? Какие соли усиливают гидролиз друг друга? Приведите примеры.
- 19. Какие растворы относятся к буферным растворам? Приведите примеры.
- 20. Как определить буферную емкость раствора?
- 21. Какие реакции называются окислительно-восстановительными?
- 22. Что такое степень окисления?
- 23. Какие процессы называются окислением и восстановлением?
- 24. Какие вещества называются окислителями и восстановителями?
- 25. Назовите наиболее важные окислители и восстановители.
- 26. Как изменяется степень окисления при окислении и восстановлении?
- 27. Как классифицируются окислительно-восстановительные реакции? Приведите примеры.
- 28. Какова роль среды в протекании окислительно-восстановительных реакций?
- 29. Как с помощью индикаторов можно распознать основные классы неорганических соединений?
- 30. Характеристические реакции на некоторые катионы (Ba2+, Ag+, Al3+, NH4+) и анионы (SO42-, Cl-, CO32- , OH-).
- 31. Какие реакции называются обратимыми и необратимыми?
- 32. Какое состояние называется химическим равновесием? Почему химическое равновесие называется динамическим и подвижным?
- 33. В чем состоит физический смысл константы химического равновесия?
- 34. Принцип Ле Шателье. Как влияет на смещение равновесия изменение концентраций веществ, температура, давление, катализатор?
- 35. Смещение химического равновесия при изменении температуры и концентрации веществ в обратимом процессе. Экспериментальное обоснование принципа ЛеШателье.
- 36. Что такое ионное произведение воды?
- 37. Что такое водородный показатель? По какой формуле он определяется?
- 38. Какие значения имеет водородный показатель в кислой, нейтральной и щелочной среде?
- 39. Что характеризует произведение растворимости? Для каких электролитов применима эта величина?
- 40. Что такое ионообменные реакции? При каких условиях реакции в растворах электролитов протекают практически необратимо и до конца?

Критерии оценивания.

Отлично

Дан полный, развернутый ответ на поставленный вопрос;

- в ответе прослеживается четкая структура, логическая последовательность, отражающая сущность раскрываемых понятий, теорий, явлений;
- знания по предмету демонстрируются на фоне понимания его места в системе данной науки и междисциплинарных связей;
- свободное владение терминологией; ответы на дополнительные вопросы четкие, краткие;

Хорошо

Дан полный, развернутый ответ на поставленный вопрос, показано умение выделять существенные и несущественные признаки, причинно-следственные связи;

- рассказ недостаточно логичен с единичными ошибками в частностях, исправленными студентом с помощью преподавателя;
- ответы на дополнительные вопросы верные, но недостаточно полные и четкие;
 Удовлетворительно

Ответ не полный, с ошибками в деталях, умение раскрыть значение обобщённых знаний не показано, речевое оформление требует поправок, коррекции;

- логика и последовательность изложения имеют нарушения, студент не способен самостоятельно выделить существенные и несущественные признаки и причинно-следственные связи;
- студент не ориентируется в терминологии химии наноматериалов, допускает серьезные ошибки;
- студент не может ответить на большую часть дополнительных вопросов. Неудовлетворительно

Ответ представляет собой разрозненные знания с существенными ошибками;

- присутствуют фрагментарность, нелогичность изложения, незнание терминологии, студент не осознает связь обсуждаемого вопроса с другими объектами дисциплины, речь неграмотная;
- ответы на дополнительные вопросы неверные или отсутствуют.

6.1.3 семестр 1 | Решение задач

Описание процедуры.

Описание процедуры: Студенты выполняют задания на практических занятиях). Пример предлагаемых задач:

- 1. Запишите электронные формулы элементов под номерами 7 и 33. Сколько атомных орбиталей р-подуровня заполнено у данных элементов? К какому семейству они относятся? У какого из них наиболее выражены металлические свойства?
- 2. Какие значения могут принимать квантовые числа n, l, ml, ms для внешних электронов атома кислорода?
- 3. Сколько атомных орбиталей d подуровня заполнено у элементов с порядковыми номерами 43 и 76? Запишите их электронные формулы

Критерии оценивания.

Решение задач оценивается в баллах. Оценка может осуществляться следующим образом:

активное участие в решении задачи - 1 балл. Баллы, полученные за каждое задание, суммируются. Максимальное количество 6-7 баллов.

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
ОПК ОС-1.3	Отлично	Экзамен
	студент полно и связно излагает	
	материал, дает правильное	
	определение основным понятиям;	

_	
может обосновать свои	
суждения, привести необходимые	
примеры	
Хорошо	
дает ответ, удовлетворяющий тем же	
требованиям, что и для отметки «5»,	
но допускает 1–2 ошибки, которые сам	
же исправляет	
Удовлетворительно	
студент знает и понимает основные	
положения данной темы, но:	
1) излагает материал неполно и	
допускает неточности в определении	
понятий	
2) не умеет доказательно обосновать	
1 -	
3) излагает материал	
непоследовательно и допускает	
_ =	
излагаемого ответа	
Неудовлетворительно	
1 9	
· ·	
2) не умеет доказательно обосновать свои суждения и привести и примеры; 3) излагает материал непоследовательно и допускает ошибки в языковом оформлении	

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 1, Типовые оценочные средства для проведения экзамена по дисциплине

6.2.2.1.1 Описание процедуры

Экзамен проводится в форме устного опроса по билетам с предварительной подготовкой студента. Экзаменатор вправе задавать дополнительные вопросы и давать расчетные задачи по программе данного курса.

Экзаменационные билеты (вопросы) утверждаются на заседании кафедры и подписываются заведующим кафедрой не позднее, чем за две недели до начала экзаменационной сессии.

При выставлении оценки экзаменатор учитывает:

- знание фактического материала по программе, в том числе; знание обязательной литературы, современных публикаций по программе курса, а также истории науки;
- степень активности студента на семинарских занятиях;
- логику, структуру, стиль ответа; культуру речи, манеру общения; готовность к дискуссии, аргументированность ответа; уровень самостоятельного мышления; умение приложить теорию к практике, решить задачи;
- наличие пропусков семинарских и лекционных занятий по неуважительным причинам

Пример задания:

Пример экзаменационного билета

Министерство науки и высшего образования РФ Иркутский национальный исследовательский технический университет Экзаменационный билет №1 по дисциплине Химия

«	_>>_	2019 г. №
		Направление 28.03.01 «Нанотехнологии и микросистемная техника»
6640	074	4 г. Иркутск, Лермонтова, 83

- 1. Основные понятия и определения химии. Атом. Химический элемент. Молекула. Строение вещества. Массовое число, нуклиды, изотопы. Аллотропия, полиморфизм, изоморфизм. Примеры.
- 2. Способы выражения концентрации растворов.
- 3. Задача № 1_

6.2.2.1.2 Критерии оценивания

Отлично	Хорошо	Удовлетворительн о	Неудовлетворительно
Отлично	Хорошо	Удовлетворительно	Неудовлетворительно
студент полно и	студент дает	студент знает и	студент обнаруживает
связно излагает	ответ,	понимает основные	незнание большей
материал, дает	удовлетворяющий	положения данной	части вопроса,
правильное	тем же	темы, но:	допускает ошибки в
определение	требованиям, что	1) излагает материал	формулировке
ОСНОВНЫМ	и для отметки «5»,	неполно и допускает	определений и правил,
понятиям; может	но допускает 1–2	неточности в	искажающие их смысл,
обосновать свои	ошибки, которые	определении	беспорядочно и
суждения,	сам же исправляет	понятий	неуверенно излагает
привести		2) не умеет	материал.
необходимые		доказательно	
примеры		обосновать свои	
		суждения и	
		привести и примеры;	
		3) излагает материал	
		непоследовательно и	
		допускает ошибки в	
		языковом	
		оформлении	
		излагаемого ответа	

7 Основная учебная литература

- 1. Глинка Н. Л. Задачи и упражнения по общей химии : учебное пособие / Н. Л. Глинка, 2012. 240.
- 2. Глинка Н. Л. Общая химия : учебное пособие / Н. Л. Глинка, 2013. 746.
- 3. Задачи и упражнения по общей химии : учеб. пособие для вузов по техн. направлениям и специальностям / Адамсон Б. И. [и др.], 2006. 253.
- 4. Задачи и упражнения по общей химии : учеб. пособие для вузов по техн. направлениям и специальностям / Адамсон Б. И. [и др.], 2008. 253.
- 5. Ахметов Н. С. Общая и неорганическая химия : учебник для химико-технологических специальностей вузов / Н. С. Ахметов, 2008. 742.

8 Дополнительная учебная литература и справочная

- 1. Коровин Н. В. Общая химия : учебник для вузов по техническим направлениям и специальностям / Н. В. Коровин, 2007. 556.
- 2. Лидин Ростислав Александрович. Химические свойства неорганических веществ : учеб. пособие для вузов по направлению "Химия" и специальности "Неорган. химия" / Р. А. Лидин, В. А. Молочко, Л. Л. Андреева, 2003. 479.
- 3. Тестовые задания по общей и неорганической химии с решениями и ответами / Р. А. Лидин [и др.], 2004. 230.
- 4. Ахметов Н. С. Лабораторные и семинарские занятия по общей и неорганической химии : учеб. пособие для ун-тов, хим.-технол. и пед. вузов / Н. С. Ахметов, М. К. Азизова, Л. И. Бадыгина, 1999. 366.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/

11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем

- 1. Microsoft Office 2007 VLK (поставки 2007 и 2008)
- 2. Microsoft Office 2007 Standard 2003 Suites и 2007 Suites поставка 2010

12 Материально-техническое обеспечение дисциплины

- 1. Весы лабораторные ВК-1500
- 2. Весы аналитические "LEKI B1604"

- 3. Центрифуга для пробирок
- 4. Мешалка магнитная с нагревом ІКА
- 5. Мешалка магнитная с нагревом ІКА
- 6. Мешалка магнитная с нагревом ІКА
- 7. Штатив лабораторный универсальный
- 8. Штатив лабораторный универсальный
- 9. Штатив лабораторный универсальный
- 10. термостат жидкостный ЛАБ-ТС-01/12