Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Структурное подразделение «Химии и биотехнологии имени В.В. Тутуриной»

УТВЕРЖДЕНА:

на заседании кафедры Протокол №16 от 12 мая 25 г.

Рабочая программа дисциплины

«ФИЗИЧЕСКАЯ ХИМИЯ»				
Специальность: 21.05.04 Горное дело				
Специальность. 21.05.04 г брибе дело				
Обогащение полезных ископаемых				
Квалификация: Горный инженер (специалист)				
Форма обучения: заочная				

Документ подписан простой электронной подписью Составитель программы: Филатова Елена Геннадьевна Дата подписания: 11.06.2025

Документ подписан простой электронной подписью Утвердил: Евстафьев Сергей

Николаевич

Дата подписания: 13.06.2025

Документ подписан простой электронной подписью Согласовал: Федотов Константин Вадимович Дата подписания: 12.06.2025

- 1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы
- 1.1 Дисциплина «Физическая химия» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ПКС-2 Способность анализировать горно-	
геологическую информацию о свойствах и	
характеристиках минерального сырья и вмещающих	ПКС-2.3
пород для выбора эффективной тех-нологии	
переработки	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ПКС-2.3	Способен использовать теоретические и прикладные вопросы физической химии для оценки основных свойств и характеристик минерального сырья	Знать законы химической термодинамики; закономерности наступления химического и фазового равновесия; характеристики электродных потенциалов и электродвижущих сил; основы химической кинетики Уметь выполнять термохимические расчёты, расчёты химического и фазового равновесия, равновесия в растворах; прогнозировать и определять свойства соединений и направления химических реакций Владеть физико-химическими методами анализа, навыками самостоятельной экспериментальной работы с лабораторным оборудованием

2 Место дисциплины в структуре ООП

Изучение дисциплины «Физическая химия» базируется на результатах освоения следующих дисциплин/практик: «Математика», «Физика», «Химия»

Дисциплина является предшествующей для дисциплин/практик: «Гидрометаллургические методы переработки минерального сырья», «Математическое моделирование технологических процессов», «Обезвоживание, пылеулавливание и очистка сточных вод»

3 Объем дисциплины

Объем дисциплины составляет – 3 ЗЕТ

Вид учебной работы	Трудоемкость в академических часах
	(Один академический час соответствует 45 минутам
	астрономического часа)

	Bcero	Семес тр № 3	Семестр № 4
Общая трудоемкость дисциплины	108	36	72
Аудиторные занятия, в том числе:	10	2	8
лекции	6	2	4
лабораторные работы	4	0	4
практические/семинарские занятия	0	0	0
Контактная работа, в том числе	0	0	0
в форме работы в электронной информационной образовательной среде	0	0	0
Самостоятельная работа (в т.ч. курсовое проектирование)	94	34	60
Трудоемкость промежуточной аттестации	4	0	4
Вид промежуточной аттестации (итогового контроля по дисциплине)	, Зачет		Зачет

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр $N_{\mathfrak{D}}$ <u>3</u>

No	Наименование	Лек	Видь ции		ктной ра Р		CEM)	C	PC	Форма
п/п	раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Химическая термодинамика	1	2					1	34	Собеседов ание
	Промежуточная аттестация									
	Всего		2						34	

Семестр **№** <u>4</u>

	Harnessanarra		Видь	і контаі	ктной ра	боты			PC	Форма
No	Наименование	Лек	ции	Л	P	П3(0	CEM)	C.	PC	Форма
п/п	раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Химическая кинетика	1	3	1	2			1, 2, 3, 4	48	Отчет по лаборатор ной работе
2	Электрохимическ ие системы	2	1	2	2			1, 2	12	Отчет по лаборатор ной работе

Промежуточная аттестация				4	Зачет
Всего	4	4		64	

4.2 Краткое содержание разделов и тем занятий

Семестр № 3

N₂	Тема	Краткое содержание	
1	Химическая	Законы термодинамики. Первое начало	
	термодинамика	термодинамики. Внутренняя энергия, энтальпия,	
		теплота и работа. Изменения энтальпии и	
		внутренней энергии в процессах для идеального	
		газа. Термодинамическое обоснование закона	
		Гесса. Теплоемкость, зависимость теплоемкости с	
		температуры. Зависимость теплового эффекта от	
		температуры. Уравнение Кирхгофа.	

Семестр № 4

N₂	Тема	Краткое содержание		
1	Химическая кинетика	Кинетическая классификация химических		
		реакций. Понятие о скорости химической реакции,		
		механизме реакции. Порядок и молекулярность		
		реакции. Формальная и молекулярная кинетика.		
		Константа скорости. Кинетически необратимые		
		реакции первого и др. порядков. Период		
		полураспада. Методы определения порядка и		
		константы скорости и константи скорости		
		Зависимость скорости и константы скорости		
		химической реакции от температуры. Правило		
		Вант-Гоффа. Уравнение Аррениуса. Энергия		
		активации.		
2	Электрохимические	Химические источники тока. Электролизеры.		
	системы	Равновесные электродные потенциалы. Электроды		
		электрохимических систем и их классификация.		
		Типы электрохимические системы: физические,		
		концентрационные, химические. Потенциометрия.		

4.3 Перечень лабораторных работ

Семестр № 4

N₂	Наименование лабораторной работы	Кол-во академических часов
1	Изучение зависимости скорости химической реакции от температуры	2
2	Определение среднего коэффициента активности электролита	2

4.4 Перечень практических занятий

Практических занятий не предусмотрено

4.5 Самостоятельная работа

Семестр № 3

N₂	Вид СРС	Кол-во академических часов
1	Проработка разделов теоретического материала	34

Семестр № 4

N₂	Вид СРС	Кол-во академических часов
1	Оформление отчетов по лабораторным и практическим работам	4
2	Подготовка к практическим занятиям (лабораторным работам)	20
3	Подготовка к сдаче и защите отчетов	6
4	Проработка разделов теоретического материала	30

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: Дискуссия является одним из видов интерактивных образовательных технологий. Представляет собой обсуждение, совместное исследование конкретной темы, задачи и явления между всеми участниками образовательного процесса. Проведение занятий-дискуссий стимулирует познавательную активность обучающихся, способствует более осмыссленному освоению ими новых знаний посредством подготовки аргументации и защиты своей позиции по обсуждаемой теме.

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по лабораторным работам:

Филатова Е.Г. Физическая химия для химиков и технологов: учебное пособие / Е.Г. Филатова, В.Г. Соболева, 2022 - 106 с.

5.1.2 Методические указания для обучающихся по самостоятельной работе:

Филатова Е.Г. Физическая химия : электронный курс / Е. Г. Филатова https://el.istu.edu/course/view.php?id=1362

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 учебный год 3 | Собеседование

Описание процедуры.

Собеседование охватывает весь пройденный материал программы 3 учебного года. Студенту задаются два четко сформулированных вопроса по пройденному разделу, рассчитанные по объему на ответ студента до 10 минут.

Критерии оценивания.

При собеседовании преподавателем проверяется: правильность и точность изложения усвоенного теоретического и практического материала.

6.1.2 учебный год 4 | Отчет по лабораторной работе

Описание процедуры.

Подготовить отчет по лабораторной работе с теоретическим введением по теме выполняемой работы и решенным индивидуальным заданием.

Критерии оценивания.

При защите отчетов преподавателем проверяется: правильность и точность проведения анализа, знание теоретического и практического материала необходимого для выполнения исследования.

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
ПКС-2.3	Выполняет термохимические расчеты,	Устное
	расчеты химического и фазового	собеседование по
	равновесия, равновесия в растворах;	вопросам
	владеет методами физико-химического	
	исследования	

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 4, Типовые оценочные средства для проведения зачета по дисциплине

6.2.2.1.1 Описание процедуры

Формы проведения зачёта – устный опрос.

Вопросы опроса охватывают весь пройденный материал программы. Студенту задаются не более трех четко сформулированных вопросов из различных разделов, тем программы, рассчитанных по объему на ответ студента в течение 15 минут. Преподаватель может задавать уточняющие вопросы по существу ответа и дополнительные вопросы по программе данной учебной дисциплины из числа заданий пройденных лабораторных работ и практических занятий.

Пример задания:

- 1. Основные постулаты химической термодинамики.
- 2. Кинетическая классификация химических реакций. Молекулярность и порядок реакции.
- 3. Электроды электрохимических систем и их классификация_

6.2.2.1.2 Критерии оценивания

Зачтено	Не зачтено
владеет методами и методиками физико-	не владеет методами и методиками
химического исследования	физико-химического исследования

7 Основная учебная литература

1. Стромберг А. Г. Физическая химия : учебник для вузов / А. Г. Стромберг, Д. П. Семченко, 2009. - 526.

8 Дополнительная учебная литература и справочная

1. Эткинс. Физическая химияРавновесная термодинамика, 2007. - 494.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/

11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем

1. Microsoft Office Professional Plus 2013

12 Материально-техническое обеспечение дисциплины

- 1. Шкаф вытяжной 1500 ШВ-2-KrO"Квадро"
- 2. 13394 Потенциометр Р-307
- 3. 312307 Колориметр КФК-2
- 4. Лабораторный рН-метр ИПЛ-301
- 5. Иономер И-160МИ
- 6. кондуктомер Эксперт
- 7. кондуктомер Эксперт
- 8. Фотометр (фотоэлектроколориметр) КФК-3-01

- 9. Анализатор жидкости "Флюорат-02-5М"
- 10. Шкаф вытяжной 1500 ШВ-2-КгО"Квадро"
- 11. Весы лабораторные ЕК300і
- 12. Термостат LT-108a
- 13. кондуктомер Эксперт -002
- 14. 12447 Иономер ЭВ-74