Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Структурное подразделение «Материаловедения, сварочных и аддитивных технологий»

УТВЕРЖДЕНА:

на заседании кафедры Протокол №<u>5</u> от <u>21 января 2025</u> г.

Рабочая программа дисциплины

«АЭРОКОСМИЧЕСКИЕ МАТЕРИАЛЫ» Направление: 15.04.05 Конструкторско-технологическое обеспечение машиностроительных производств Передовые производственные технологии Квалификация: Магистр Форма обучения: очная

Документ подписан простой электронной подписью Составитель программы: Николаева Елена Павловна Дата подписания: 17.06.2025

Документ подписан простой электронной подписью Утвердил: Балановский Андрей Евгеньевич

Дата подписания: 18.06.2025

Документ подписан простой электронной подписью Согласовал: Савилов Андрей Владиславович

Дата подписания: 17.06.2025

- 1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы
- 1.1 Дисциплина «Аэрокосмические материалы» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ПК-2 Способен выбирать и эффективно использовать	
материалы, оборудование, инструменты,	
технологическую оснастку, средства автоматизации,	ПК-2.3, ПК-2.5
контроля, диагностики технологических процессов	
изготовления машиностроительной продукции	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ПК-2.3	Способен выбирать и эффективно использовать конструкционные материалы на основе железа, эффективно использовать средства контроля структуры и свойств при изготовлении из них машиностроительной продукции	Знать состав, структуру, свойства современных конструкционных и инструментальных материалов на основе железа; физическую сущность явлений, происходящих в материалах под воздействием внешних факторов (температуры, давления, механического воздействия). Уметь выбирать способ упрочнения авиационных сплавов на основе железа (термообработка, пластическая деформация). Владеть навыками подготовки материалов к металлографическому исследованию; проведения микроанализа металлических авиационных материалов; исследования структуры и свойств сталей.
ПК-2.5	Способен выбирать и	Знать состав, структуру, свойства
	эффективно использовать конструкционные материалы на основе титана, алюминия, эффективно использовать средства контроля структуры и свойств при изготовлении из них машиностроительной продукции	современных конструкционных материалов на основе титана, алюминия, композиционных материалов; назначение и область применения физических методов, используемых при исследовании их структуры и свойств. Уметь выбирать способ упрочнения металлического сплава на основе титана, алюминия Владеть навыками измерения твердости; осуществлять упрочняющую термическую

	обработку сплавов алюминия
	(закалку и старение)

2 Место дисциплины в структуре ООП

Изучение дисциплины «Аэрокосмические материалы» базируется на результатах освоения следующих дисциплин/практик: Нет

Дисциплина является предшествующей для дисциплин/практик: «Инструменты для высокопроизводительной механообработки», «Технология высокопроизводительной механообработки авиационных деталей»

3 Объем дисциплины

Объем дисциплины составляет – 7 ЗЕТ

	Трудоемкость в академических часах					
	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		ответствует 45 минутам			
Вид учебной работы	астро	ого часа)				
	Всего	Семес тр № 1	Семестр № 2			
Общая трудоемкость дисциплины	252	108	144			
Аудиторные занятия, в том числе:	69	30	39			
лекции	15	15	0			
лабораторные работы	28	15	13			
практические/семинарские занятия	26	0	26			
Самостоятельная работа (в т.ч. курсовое проектирование)	111	42	69			
Трудоемкость промежуточной аттестации	72	36	36			
Вид промежуточной аттестации (итогового контроля по дисциплине)	Экзамен	Экзам ен	Экзамен			

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр № 1

	Harrisanarra	Виды контактной работы							PC	Форуга
N₂	Наименование	Лек	ции	Л	[P	П3(0	CEM)	C.	PC	Форма
п/п	раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	No	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Введение в дисциплину «Аэрокосмически е материалы»	1	3	1, 2	5			1, 2, 3, 4, 5	13	Тест
2	Порошковые конструкционные	2	4					3, 4, 5	7	Тест

	материалы								
3	Высокопрочные конструкционные стали	3	4	3, 4	6		1, 2, 3, 4, 5	11	Тест
4	Быстрорежущие порошковые стали нового поколения	4	4	5	4		1, 2, 3, 4, 5	11	Тест
	Промежуточная аттестация							36	Экзамен
	Всего		15		15			78	

Семестр **№** <u>2</u>

	Наименование	Виды контактной работы						CPC		Форма	
No		Лек	ции	Л	P	П3(0	CEM)	C.	PC	Форма	
п/п	раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	текущего контроля	
1	2	3	4	5	6	7	8	9	10	11	
1	Алюминиевые сплавы			1, 2	8	1	2	1, 2, 3, 5	18	Тест	
2	Титановые сплавы			3	5	2	4	1, 2, 3, 4, 5	21	Тест	
3	Композиционные материалы					3, 4, 5, 6	20	1, 3, 4, 5	26	Тест	
	Промежуточная аттестация								36	Экзамен	
	Всего				13		26		101		

4.2 Краткое содержание разделов и тем занятий

Семестр № $\underline{1}$

N₂	Тема	Краткое содержание	
1	Введение в дисциплину	В этом разделе рассматривается классификация	
	«Аэрокосмические	материалов, применяемых в аэрокосмическом	
	материалы»	машиностроении, предъявляемые к ним	
		требования; рациональный выбор материалов на	
		основании анализа функционального назначения	
		детали, условий эксплуатации, технологических	
		показателей. Методы исследования	
		микроструктуры аэрокосмических материалов.	
2	Порошковые	Рассматривается влияние размера зерна на	
	конструкционные	свойства сталей и сплавов; понятие	
	материалы	нанокристаллических, микрокристаллических,	
		моно- и поликристаллических материалов.	
		Показаны преимущества порошковых материалов	
		перед литыми. Пористые и компактные	
		порошковые материалы. Виды порошковых	
		специальных сплавов (жаропрочные,	
		дисперсионно-упрочненные материалы;	
		сверхтвердые), области их приме-нения. Методы	
		получения. Свойства порошковых материалов.	
3	Высокопрочные	В этом разделе рассматриваются: высокопрочные	
	конструкционные стали	конструкционные стали – низколегированные	

		(30ХГСА и др.), коррозионностойкие стали (ВНС-5, ВНС-2, ЭП817). Виды упрочнения
		высокопрочных сталей: легирование,
		поверхностное пластическое деформирование
		(ППД), термическая обработка. Фазовые и
		структурные превращения, происходящие при
		различных способах упрочнения. Свойства и
		применение высокопрочных сталей в авиационной
		технике.
4	Быстрорежущие	Рассматриваются требования, предъявляемые к
	порошковые стали	быстрорежущим сталям (БРС), которые
	нового поколения	используются при обработке авиационных
		материалов. Рассматриваются особенности
		термической обработки и структурного
		упрочнения БРС на примере классических сталей
		(Р18, Р6М5, Р6М5К5), быстро-режущих сталей с
		интерметаллидным упрочнением (ЭП831,
		В4М12К23, И8К14М18Т). Показаны
		преимущества порошковых БРС. Изучается
		структура и свойства быстрорежущих порошковых
		сталей нового поколения на примере сталей Böhler
		Microclean (S290, S390, ASP2060, др.),
		безуглеродистого инструментального Fe-Co-Mo
		сплава МС90.
	I.	

Семестр № 2

N₂	Тема	Краткое содержание	
1	Алюминиевые сплавы	Классификация и маркировка сплавов алюминия,	
		применяемых в современном авиационном	
		машиностроении, их тер-мическая обработка,	
		влияние легирующих элементов, изменение	
		микроструктуры и свойств в результате закалки,	
		ста-рения. Изучаются промышленные сплавы	
		алюминия: не-упрочняемые термической	
		обработкой (Амг, Амц), высоко-прочные	
		свариваемые (Al-Zn-Mg-Cu-Sc и др.),	
		гранулируемые, порошковые (САП, САС),	
		сверхлегкие (1420 и др.), дюралюмины,	
		высокопрочные (В95 и др.), жаропрочные (АК4-1	
		и др.).	
2	Титановые сплавы	Классификация сплавов титана, влияние	
		легирующих эле-ментов и примесей внедрения на	
		их структуру и свойства; основные типы и области	
		применения сплавов титана. Альфированный	
		слой. Термическая обработка титановых сплавов,	
		фазовые превращения при закалке сплавов титана.	
		Сплавы титана на основе интерметаллидов (Ti-Al,	
		Ti-Ni). Эффект памяти формы. Сверхупругость.	
3	Композиционные	Классификация, компоненты, структура и свойства	
	материалы	композитов. Виды и свойства матрицы и	
		наполнителей. Порошковые композиционные	

	материалы. Композиты с полимерной матрицей.
	Методы изготовления полимерных
	композиционных материалов (ПКМ).

4.3 Перечень лабораторных работ

Семестр № $\underline{1}$

Nº	Наименование лабораторной работы	Кол-во академических часов
1	ЛР-1 Выбор схемы подготовки сплава к металлографическим исследованиям	1
2	ЛР-2 Изучение работы современного оборудования для пробоподготовки	4
3	ЛР-З Изучение устройства и принципа работы металлографического микроскопа МЕТ-2	2
4	ЛР-4 Изучение структуры и свойств высокопрочных сталей	4
5	ЛР-5 Изучение структуры и свойств быстрорежущих сталей	4

Семестр № 2

N₂	Наименование лабораторной работы	Кол-во академических часов
1	ЛР-1 Изучение микроструктуры и свойств алюминиевых сплавов	4
2	ЛР-2 Термообработка алюминиевых сплавов	4
3	ЛР-3 Изучение микроструктуры и свойств титановых сплавов	5

4.4 Перечень практических занятий

Семестр № 2

No	Темы практических (семинарских) занятий	Кол-во академических
112		часов
1	ПР-1	2
2	ПР-2	4
3	ПР-3	2
4	ПР-4	6
5	ПР-5	6
6	ПР-6	6

4.5 Самостоятельная работа

Семестр № 1

N₂	Вид СРС	Кол-во академических часов
1	Оформление отчетов по лабораторным и практическим работам	8
2	Подготовка к практическим занятиям	6

	(лабораторным работам)	
3	Подготовка к экзамену	8
4	Проработка разделов теоретического материала	4
5	Прохождение массового открытого онлайн- курса	16

Семестр № 2

Nº	Вид СРС	Кол-во академических часов
1	Подготовка к практическим занятиям	14
2	Подготовка к практическим занятиям (лабораторным работам)	7
3	Подготовка к экзамену	6
4	Проработка разделов теоретического материала	12
5	Прохождение массового открытого онлайн- курса	30

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: В ходе проведения занятий используются следующие интерактивные методы обучения: исследовательский метод, работа в малых группах, лекция-диалог, дискуссия, анализ конкретной ситуации.

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по практическим занятиям

Николаева Е.П. Методические указания по освоению дисциплины «Материаловедение (спецкурс)». Иркутск, 2018. (электронный ресурс) er-20303.

5.1.2 Методические указания для обучающихся по лабораторным работам:

Николаева Е.П. Методические указания по освоению дисциплины «Материаловедение (спецкурс)». Иркутск, 2018. (электронный ресурс) er-20303.

5.1.3 Методические указания для обучающихся по самостоятельной работе:

Прохождение массового открытого онлайн-курса (MOOK). Для самостоятельной работы обучающихся по данной дисциплине рекомендуется использовать онлайн-курс в системе «Moodle» «Аэрокосмические материалы»: https://el.istu.edu/course/view.php?id=1158 (1 семестр); https://el.istu.edu/course/view.php?id=1066 (2 семестр).

Перед началом работы рекомендуется ознакомиться с разделом «Введение», после которого станут доступными все последующие разделы курса. Изучайте самостоятельно содержимое электронного курса в следующей последовательности:

- 1. теория (в каждом разделе распределена по отдельным темам);
- 2. учебные и научно-популярные видеофильмы;
- 3. задания (для закрепления изученного теоретического материала);
- 4. словарь (глоссарий),
- 5. игры (для закрепления изученной терминологии);

- 6. тесты (для контроля знаний);
- 7. В завершении онлайн-курса рекомендуется выполнить контролирующее итоговое задание или итоговый тест.

Подготовка к практическим занятиям, лабораторным работам.

Перед проведением практического занятия или лабораторной работы обучающемуся необходимо изучить основную и дополнительную литературу по теме предстоящего занятия, ответить на контрольные вопросы. Перечень заданий, вопросов или тем, которые будут рассмотрены на занятиях, сообщаются преподавателем и указаны в методических указаниях по практическим работам.

Оформление отчетов по лабораторным работам и/или практическим занятиям. По окончании лабораторной работы и/или практического занятия обучающийся должен подготовить отчет. Отчёт оформляется в соответствии с требованиями, приведёнными в методических указаниях к практическим занятиям, в методических указаниях к лабораторным работам. Подготовка к сдаче и защите отчетов по практическим и лабораторным работам предполагает подготовку по контрольным вопросам и проработку хода выполнения этих работ. Обучающийся при выполнении данного вида СРС должен пользоваться рекомендуемой литературой и информационными ресурсами. При защите отчета обучающийся должен знать ход выполнения работы и отвечать на контрольные вопросы.

Проработка отдельных разделов теоретического курса.

Обучающийся при выполнении данного вида СРС должен пользоваться рекомендуемой литературой и рекомендованными информационными ресурсами. В процессе изучения материала обучающемуся предлагается составить конспект. Обучающийся по своему усмотрению составляет краткий, подробный или смешанный конспект. Краткий конспект включает терминологию и/или положения общего характера. Подробный конспект включает также доказательства этих положений, пояснения, иллюстративный материал. В смешанном конспекте некоторые смысловые части представлены в виде пунктов плана, тезисов, а другие — более подробно. Конспект составляется письменно, в отдельной тетради, или на компьютере. В конце конспекта помещается список использованных при его написании информационных источников. Контроль выполнения данного вида СРС в виде собеседования производится при защите лабораторных, практических работ. Вопросы по темам, подлежащим самостоятельному изучению, входят в список вопросов для подготовки к экзамену.

Перечень вопросов для проработки отдельных разделов теоретического курса. Семестр 1.

Тема 1: Методы исследования микроструктуры аэрокосмических материалов.

Тема 2: Применение СВС-технологии в производстве порошковых материалов.

Тема 3: Мартенситно-стареющие высокопрочные стали: свойства, упрочнение, применение.

Тема 4: Безуглеродистый инструментальный сплав МС90.

Семестр 2.

Тема 1: Жаропрочные алюминиевые сплавы. Алюминиевые порошковые сплавы (САП, САС).

Тема 2: Явление сверхупругости в титановых сплавах. Функциональные свойства сверхупругих сплавов на основе Ti-Zr.

Тема 3: Полимерный композиционный материал на основе гибридного

металлоуглеродного армирующего наполнителя: свойства и применение.

Подготовка к экзамену.

Подготовка к экзамену заключается в повторении материала, выносимого для итогового контроля знаний. При подготовке к экзамену необходимо повторить пройденный материал в соответствии с учебной программой, перечнем экзаменационных вопросов. Рекомендуется использовать конспект лекций и литературу из основного и дополнительного списка. Обратите особое внимание на темы учебных занятий, пропущенных студентом по разным причинам. При необходимости обратиться за консультацией и методической помощью к преподавателю.

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 семестр 1 | Тест

Описание процедуры.

Описание процедуры: процедура одинаковая для всех тестов.

При прохождении компьютерного тестирования задания для каждого студента выбираются программой случайным образом из общего объема тестовых заданий по дисциплине.

Типы вопросов теста: множественный выбор; верно-неверно; вопросы на соответствие; выбор пропущенных слов.

Тестирование выполняется индивидуально после оформления студентом отчета по лабораторной работе и/или практической работе и их защиты. Вопросы теста составлены по всей теме дисциплины. В тесте содержится от 5 до 15 вопросов. К каждому вопросу предлагаются несколько вариантов ответов. Задача студента — выбрать правильный ответ.

Критерии оценивания.

Критерии оценки: При 60...100% правильных ответов тест считается зачтенным. При меньшем количестве правильных ответов процедура тестирования повторяется после повторения студентом соответствующей темы дисциплины.

6.1.2 семестр 2 | Тест

Описание процедуры.

Описание процедуры: процедура одинаковая для всех тестов.

При прохождении компьютерного тестирования задания для каждого студента выбираются программой случайным образом из общего объема тестовых заданий по дисциплине.

Типы вопросов теста: множественный выбор; верно-неверно; вопросы на соответствие; выбор пропущенных слов.

Тестирование выполняется индивидуально после оформления студентом отчета по лабораторной работе и/или практической работе и их защиты. Вопросы теста составлены по всей теме дисциплины. В тесте содержится от 5 до 15 вопросов. К каждому вопросу предлагаются несколько вариантов ответов. Задача студента – выбрать правильный ответ.

Критерии оценивания.

Критерии оценки: При 60...100% правильных ответов тест считается зачтенным. При меньшем количестве правильных ответов процедура тестирования повторяется после повторения студентом соответствующей темы дисциплины.

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
ПК-2.3	Способен выбирать и эффективно использовать конструкционные материалы на основе железа, эффективно использовать средства контроля структуры и свойств при изготовлении из них машиностроительной продукции	Тестирование
ПК-2.5	Способен выбирать и эффективно использовать конструкционные материалы на основе цветных металлов, композиционных материалов, средства контроля структуры и свойств при изготовлении из них машиностроительной продукции	Тестирование

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 1, Типовые оценочные средства для проведения экзамена по дисциплине

6.2.2.1.1 Описание процедуры

Экзамен проводятся в период экзаменационной сессии, предусмотренной учебным планом. Для подготовки к экзамену выдаётся список вопросов. Форма проведения экзамена, критерии оценки ответа обучающегося доводятся до сведения обучающихся до начала экзамена. Результат экзамена объявляется обучающемуся непосредственно после его сдачи. Оценка выставляется в экзаменационную ведомость и зачетную книжку обучающегося. Выставление оценок на экзамене осуществляется на основе принципов объективности, справедливости, всестороннего анализа уровня знаний и освоения компетенций обучающихся.

Описание процедуры экзамена в форме компьютерного тестирования.

1 вариант проведения экзамена: тест представляет собой перечень вопросов с вариантами ответов. Количество вопросов в тесте — от 20 до 30. Вопросы теста составляются по всем разделам дисциплины. Типы вопросов теста: множественный выбор; верно-неверно; вопросы на соответствие; выбор пропущенных слов. К каждому вопросу предлагаются несколько вариантов ответов, из которых обучающийся должен выбрать один или несколько правильных ответов. Тестирование проводится с ограничением времени. Тест выполнен успешно, если получено более 60% правильных ответов.

2 вариант проведения экзамена: экзаменационный билет содержит один вопрос из каждой изучаемой темы. Вопрос выбирается программой из банка вопросов случайным образом. Ответ на экзаменационный вопрос осуществляется в форме эссе в течении ограниченного времени (40-60 минут).

Описание процедуры экзамена в устной форме.

Экзамен проводиться в форме устного опроса с предварительной подготовкой в течение 30...40 минут. Экзаменационный билет содержит один вопрос из каждой изучаемой темы.

6.2.2.1.2 Критерии оценивания

Отлично	Хорошо	Удовлетворительн о	Неудовлетворительно
Усвоил материал	Знает материал	Знает основные	Не усвоил материал
курса, излагает его	курса, и умеет	положения курса, но	курса, излагает его
логически	практически	не проявляет	логически стройно, с
стройно, с полным	использовать его.	должную глубину в	полным пониманием
пониманием	Допускает при	понимании существа	существа вопроса.
существа вопроса.	ответе	вопросов. Допускает	Неверно отвечает при
Правильно	несущественные	существенные	видоизменении
отвечает при	неточности,	неточности,	вопроса (задания),
видоизменении	погрешности в	поверхностные	свободно выполняет
вопроса (задания),	изложении,	формулировки.	задания, предлагаемые
свободно	небрежности в	Излагает материал	экзаменатором,
выполняет	оформлении	нелогично,	правильно
задания,	записей и	испытывает	обосновывает
предлагаемые	рисунков.	затруднения в	принятые решения.
экзаменатором,	В основном умеет	практическом	Не умеет выбирать
правильно	выбирать метод	применении знаний.	метод подготовки
обосновывает	подготовки	Демонстрирует	конструкционных и
принятые	конструкционных	слабое умение	инструментальных
решения.	И	выбирать метод	материалов к
Умеет выбирать	инструментальных	подготовки	металлографическому
метод подготовки	материалов к	конструкционных и	исследованию на
конструкционных	металлографическ	инструментальных	основе знаний об их
И	ому исследованию	материалов к	химическом составе,
инструментальных	на основе знаний	металлографическом	структуре, свойствах,
материалов к	об их химическом	у исследованию на	способе упрочнения.
металлографическ	составе,	основе знаний об их	Не демонстрирует
ому исследованию	структуре,	химическом составе,	владение основными
на основе знаний	свойствах, способе	структуре,	навыками
об их химическом	упрочнения.	свойствах, способе	исследования
составе,	В основном	упрочнения.	микроструктуры
структуре,	демонстрирует	Демонстрирует	черных сплавов.

свойствах, способе упрочнения. Демонстрирует владение ОСНОВНЫМИ навыками исследования микроструктуры черных сплавов. Демонстрирует знание основ физической сущности явлений, происходящих в конструкционных сплавах на основе железа и в инструментальных материалах в условиях производства и эксплуатации изделий из них под воздействием внешних факторов (нагрев, охлаждение, давление и т.д.), оценивает их влияние на структуру, на свойства. Тестирование: "отлично" -90...100% правильных ответов.

владение ОСНОВНЫМИ навыками исследования микроструктуры черных сплавов. В основном демонстрирует знание основ физической сущности явлений, происходящих в конструкционных сплавах на основе железа и в инструментальных материалах в условиях производства и эксплуатации изделий из них под воздействием внешних факторов (нагрев, охлаждение, давление и т.д.), оценивает их влияние на структуру, на свойства. Тестирование: "хорошо" -

80...89%.

слабое владение основными навыками исследования микроструктуры черных сплавов. Демонстрирует поверхностное знание основ физической сущности явлений, происходящих в конструкционных сплавах на основе железа и в инструментальных материалах в условиях производства и эксплуатации изделий из них под воздействием внешних факторов (нагрев, охлаждение, давление и т.д.), оценивает их влияние на структуру, на свойства. Тестирование: "удовлетворительно

" - 61...79%.

Не демонстрирует знание основ физической сущности явлений, происходящих в конструкционных сплавах на основе железа и в инструментальных материалах в условиях производства и эксплуатации изделий из них под воздействием внешних факторов (нагрев, охлаждение, давление и т.д.), оценивает их влияние на структуру, на свойства. Тестирование: "неудовлетворительно" – менее 60%.

6.2.2.2 Семестр 2, Типовые оценочные средства для проведения экзамена по дисциплине

6.2.2.2.1 Описание процедуры

Экзамен проводятся в период экзаменационной сессии, предусмотренной учебным планом. Для подготовки к экзамену выдаётся список вопросов. Форма проведения экзамена, критерии оценки ответа обучающегося доводятся до сведения обучающихся до начала экзамена. Результат экзамена объявляется обучающемуся непосредственно после его сдачи. Оценка выставляется в экзаменационную ведомость и зачетную книжку обучающегося. Выставление оценок на экзамене осуществляется на основе принципов

объективности, справедливости, всестороннего анализа уровня знаний и освоения компетенций обучающихся.

Описание процедуры экзамена в форме компьютерного тестирования.

1 вариант проведения экзамена: тест представляет собой перечень вопросов с вариантами ответов. Количество вопросов в тесте — от 20 до 30. Вопросы теста составляются по всем разделам дисциплины. Типы вопросов теста: множественный выбор; верно-неверно; вопросы на соответствие; выбор пропущенных слов. К каждому вопросу предлагаются несколько вариантов ответов, из которых обучающийся должен выбрать один или несколько правильных ответов. Тестирование проводится с ограничением времени. Тест выполнен успешно, если получено более 60% правильных ответов.

2 вариант проведения экзамена: экзаменационный билет содержит один вопрос из каждой изучаемой темы. Вопрос выбирается программой из банка вопросов случайным образом. Ответ на экзаменационный вопрос осуществляется в форме эссе в течении ограниченного времени (40-60 минут).

Описание процедуры экзамена в устной форме.

Экзамен проводиться в форме устного опроса с предварительной подготовкой в течение 30...40 минут. Экзаменационный билет содержит один вопрос из каждой изучаемой темы.

6.2.2.2 Критерии оценивания

Отлично	Хорошо	Удовлетворительн 0	Неудовлетворительно
Усвоил материал	В основном	Знает материал	Не усвоил материал
курса, излагает его	усвоил материал	курса, и умеет	курса, не излагает его
логически	курса, излагает его	практически	логически стройно, с
стройно, с полным	логически	использовать его.	полным пониманием
пониманием	стройно, с полным	Допускает при	существа вопроса.
существа вопроса.	пониманием	ответе	Неверно отвечает при
Правильно	существа вопроса.	несущественные	видоизменении
отвечает при	Правильно	неточности,	вопроса (задания), не
видоизменении	отвечает при	погрешности в	выполняет задания,
вопроса (задания),	видоизменении	изложении,	предлагаемые
свободно	вопроса (задания),	небрежности в	экзаменатором, не
выполняет	свободно	оформлении записей	обосновывает
задания,	выполняет	и рисунков.	принятые решения.
предлагаемые	задания,	Демонстрирует	Не демонстрирует
экзаменатором,	предлагаемые	слабые знания	основные знания
правильно	экзаменатором,	химического	химического состава,
обосновывает	правильно	состава, структуры и	структуры и свойств
принятые	обосновывает	свойств	современных сплавов
решения.	принятые	современных	алюминия, титана,
Демонстрирует	решения.	сплавов алюминия,	композиционных
основные знания	В основном	титана,	материалов,
химического	демонстрирует	композиционных	применяемых в
состава,	основные знания	материалов,	авиации.
структуры и	химического	применяемых в	Не умеет проводить
свойств	состава,	авиации.	термическую
современных	структуры и	Демонстрирует	обработку (закалку и
сплавов	свойств	слабое умение	старение) сплавов

алюминия, титана, композиционных материалов, применяемых в авиации. Умеет проводить термическую обработку (закалку и старение) сплавов алюминия, определять их твердость до и после термообработки. Демонстрирует знание основ физической сущности явлений, происходящих в цветных сплавах в условиях производства и эксплуатации изделий из них под воздействием внешних факторов (нагрев, охлаждение, давление и т.д.), их влияние на структуру, на свойства. Демонстрирует владение основными навыками исследования микроструктуры цветных сплавов. Тестирование: "отлично" -90...100% правильных ответов.

современных сплавов алюминия, титана, композиционных материалов, применяемых в авиации. В основном умеет проводить термическую обработку (закалку и старение) сплавов алюминия, определять их твердость до и после термообработки. В основном демонстрирует знание основ физической сущности явлений, происходящих в цветных сплавах в условиях производства и эксплуатации изделий из них под воздействием внешних факторов (нагрев, охлаждение, давление и т.д.), их влияние на структуру, на свойства. В основном демонстрирует владение

основными

навыками

исследования

микроструктуры

цветных сплавов. Тестирование: "хорошо" -80...89%.

проводить термическую обработку (закалку и старение) сплавов алюминия, определять их твердость до и после термообработки. Демонстрирует слабые знания основ физической сущности явлений, происходящих в цветных сплавах в условиях производства и эксплуатации изделий из них под воздействием внешних факторов (нагрев, охлаждение, давление и т.д.), их влияние на структуру, на свойства. Демонстрирует слабое владение основными навыками исследования микроструктуры цветных сплавов. Тестирование: "удовлетворительно

" - 61...79%.

алюминия, определять их твердость до и после термообработки. Не демонстрирует знание основ физической сущности явлений, происходящих в цветных сплавах в условиях производства и эксплуатации изделий из них под воздействием внешних факторов (нагрев, охлаждение, давление и т.д.), их влияние на структуру, на свойства. Не демонстрирует владение основными навыками исследования микроструктуры цветных сплавов. Тестирование: "неудовлетворительно" – менее 60%.

7 Основная учебная литература

- 1. Аэрокосмические материалы [Электронный ресурс] : учебное пособие / А. В. Савилов, Е. П. Николаева, С. Н. Сорокова [и др.], 2021. 246.
- 2. Орлов К. Я. Авиационные материалы / К. Я. Орлов, В. А. Пархимович, 1993. 206.
- 3. Зубарев Ю. М. Современные инструментальные материалы: учебник для вузов по специальности 151001 направления подготовки "Конструкторско-технологическое обеспечение машиностроительных производств" / Ю. М. Зубарев, 2008. 223.
- 4. Лахтин Ю. М. Металловедение и термическая обработка металлов: учебник для машиностроительных и металлургических специальностей вузов / Ю. М. Лахтин, 2009. 446.
- 5. Суперсплавы II. Жаропрочные материалы для аэрокосмических и промышленных энергоустановок : В двух кн. / Под ред.:Симса Ч.Т., Столоффа Н.С., Хагеля У.К. Кн. 2 / ред. Р. Е. Шалин ; пер. с англ.: Ю. П. Либеров, А. Б. Цепелев, 1995. 383.
- 6. Строение и свойства авиационных материалов : учебник для втузов / А. Ф. Белов [и др.], 1989. 368.

8 Дополнительная учебная литература и справочная

- 1. Колачев Б. А. Металловедение и термическая обработка цветных металлов и сплавов : учеб. для вузов по специальности "Металловедение и терм. обраб. металлов" / Б. А. Колачев, В. И. Елагин, В. А. Ливанов, 1999. 413.
- 2. Металловедение титана и его сплавов / Отв. ред. С. Г. Глазунов, Б. А. Колачев, 1992. 351.
- 3. Колачев Б. А. Физические основы пластической деформации металлов : [учебное пособие] / Б. А. Колачев, 1978. 74.
- 4. Абраимов Николай Васильевич. Авиационное материаловедение и технология обработки металлов : учеб. пособие для авиац. вузов / Н. В. Абраимов, Ю. С. Елисеев, В. В. Крымов, 1998. 444.
- 5. Лахтин Ю. М. Авиационное металловедение / Ю. М. Лахтин, 1945. 354.
- 6. Корнилов И. И. Никелид титана и другие сплавы с эффектом "памяти" / И. И. Корнилов, О. К. Белоусов, Е. В. Качур, 1977. 179.
- 7. Полимерные композиционные материалы: структура, свойства, технология: учебное пособие / М. Л. Кербер [и др.], 2009. 556.
- 8. Гаршин А. П. Композиционные материалы в машиностроении. Керамические материалы : учебное пособие / А. П. Гаршин, Г. П. Зайцев, 2022. 412.
- 9. Приданцев С. А. Металлические композиционные материалы : учебное пособие / С. А. Приданцев, 1978. 68.
- 10. Шаглаева Н. С. Полимерные композиционные материалы в машиностроении : лабораторный практикум / Н. С. Шаглаева, Т. А. Подгорбунская, В. В. Баяндин, 2023. 70.
- 11. Бубненков И. А. Углерод-углеродные композиционные материалы на основе волокнистых наполнителей: учебное пособие / И. А. Бубненков, 2020. 268.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/

11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем

12 Материально-техническое обеспечение дисциплины

- 1. 12859 Микроскоп МПСУ-1
- 2. 11505 Твердомер ТШ-2
- 3. Печь муфельная ЭКПС 10
- 4. Печь муфельная ПМ-8 (6.5л,550-900С)
- 5. Микроскоп Микромед Полар-1
- 6. Электропечь муфельная ЭКПС-10 СНОЛ
- 7. Твердомер стационарный универсальный HBRV-187.5
- 8. Микроскоп цифровой стереоскопический Микромед МС-2
- 9. Проектор мультимедиа BenQ MW621ST(с экраном 2*2м)
- 10. Микроскоп Микромед МЕТ-2
- 11. Микроскоп цифровой стационарный Микромед LCD
- 12. Микроскоп металлографический ММР-2