Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Структурное подразделение «Инженерной и компьютерной графики»

УТВЕРЖДЕНА:

на заседании кафедры Протокол N 2 2 от 05 февраля 2025 г.

Рабочая программа дисциплины

«ИНЖЕНЕРНАЯ И КОМПЬЮТЕРНАЯ ГРАФИКА»
Направление: 11.03.01 Радиотехника
Радиотехнические средства передачи, приема и обработки сигналов
Квалификация: Бакалавр
Форма обучения: заочная

Документ подписан простой электронной подписью

Составитель программы: Верхотурова Елена

Викторовна

Дата подписания: 16.06.2025

Документ подписан простой электронной подписью

Утвердил: Перелыгина Александра Юрьевна

Дата подписания: 16.06.2025

1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

1.1 Дисциплина «Инженерная и компьютерная графика» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции		
ОПК ОС-1 Способность использовать положения,			
законы и методы естественных наук и математики	ОПК ОС-1.3		
для решения задач инженерной деятельности			
ОПК ОС-2 Способность самостоятельно проводить			
измерения параметров, анализировать полученные	ОПК ОС-2.2		
данные и использовать основные приемы обработки и	OHR 0C-2.2		
представления полученных данных			

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ОПК ОС-2.2	Владеет навыками работы в САПР, построения двумерных электронных чертежей. Владеет навыками поиска и обработки информации в стандартах ЕСКД	Знать основные методы построения двумерных электронных чертежей методами компьютерной графики Уметь создавать двумерные электронные чертежи методами компьютерной графики Владеть навыками работы с графическим редактором папоСАD, построением двумерных электронных чертежей, навыками поиска и обработки справочной информации
ОПК ОС-1.3	Знает основные методы и законы начертательной геометрии. Владеет методами построения обратимых чертежей пространственных объектов, изображения на чертежах линий, плоскостей и поверхностей	Знать основные методы и законы инженерной графики Уметь создавать чертежи методами построения обратимых чертежей пространственных объектов Владеть навыками построения обратимых чертежей пространственных объектов, изображения на чертежах линий, плоскостей и поверхностей

2 Место дисциплины в структуре ООП

Изучение дисциплины «Инженерная и компьютерная графика» базируется на результатах освоения следующих дисциплин/практик: Нет

Дисциплина является предшествующей для дисциплин/практик: «Информационные технологии», «Основы проектной деятельности», «Производственная практика: преддипломная практика», «Введение в профессиональную деятельность», «Основы компьютерного проектирования РЭС»,

«Основы конструирования и технологии производства РЭС», «Радиотехнические цепи и сигналы», «Схемотехника аналоговых электронных устройств»

3 Объем дисциплины

Объем дисциплины составляет – 4 ЗЕТ

Вид учебной работы	Трудоемкость в академических часах (Один академический час соответствует 45 минутам астрономического часа)			
	Всего	Учебный год № 1		
Общая трудоемкость дисциплины	144	144		
Аудиторные занятия, в том числе:	18	18		
лекции	6	6		
лабораторные работы	0	0		
практические/семинарские занятия	12	12		
Самостоятельная работа (в т.ч. курсовое проектирование)	122	122		
Трудоемкость промежуточной аттестации	4	4		
Вид промежуточной аттестации (итогового контроля по дисциплине)	Зачет с оценкой	Зачет с оценкой		

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Учебный год № <u>1</u>

	Наименование	Виды контактной работы				C	СРС Фо			
No l		Лек	Лекции ЛР		П3(СЕМ)		CPC		Форма	
п/п	раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	No	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Единая система конструкторской и технологической документации (ЕСКД и ЕСТД)	1	2					3	10	
2	Проецирование геометрических образов: точка, прямая, плоскость, поверхность	2	1			1, 2, 3	6	2	26	Проверочн ая работа
3	Чертеж детали. Элементы геометрии детали. Стандартные аксонометрически е проекции	3	1			4	2	4	44	Проверочн ая работа
4	Изделия, виды изделий. Виды и комплектность	5	1			6	2	1	42	Проверочн ая работа

	конструкторских документов. Рабочие чертежи, эскизы, сборочный чертеж							
5	Виды соединений деталей и правила их изображения на чертежах	4	1		5	2		Проверочн ая работа
6	Изучение и применение САПР							
	Промежуточная аттестация						4	Зачет с оценкой
	Всего		6			12	126	

4.2 Краткое содержание разделов и тем занятий

Учебный год № <u>1</u>

No	Тема	Краткое содержание
1	Единая система конструкторской и технологической документации (ЕСКД и ЕСТД)	ГОСТ 2.001-2013 Единая система конструкторской документации (ЕСКД). Общие положения. ГОСТ 3.1001-2011 Единая система технологической документации (ЕСТД). Общие положения. Основные требования к чертежам. Общие правила оформления чертежей. Общие правила выполнения чертежей
2	Проецирование геометрических образов: точка, прямая, плоскость, поверхность	Метод ортогонального проецирования. Свойства параллельных проекций. Позиционные и метрические задачи
3	Чертеж детали. Элементы геометрии детали. Стандартные аксонометрические проекции	Основные и дополнительные виды, требования ГОСТ 2.305 – 2008. Разрезы (простые и сложные или ступенчатые), сечения (вынесенные и наложенные). Совмещение видов и разрезов на изображении, граница вида и разреза (ось или линия обрыва). Составление и чтение чертежа сложной технической формы (изделия). Построение чертежа модели детали с применением стандартов 2.305 – 307, с выполнением фронтального и профильного разрезов. Простановка размеров на чертеже. Наглядное изображение модели детали с вырезом четверти. Прямоугольная изометрическая проекция детали. Простановка размеров в аксонометрии
4	Изделия, виды изделий. Виды и комплектность конструкторских документов. Рабочие чертежи, эскизы, сборочный чертеж	Изделия, виды изделий. Виды конструкторских документов. Сборочный чертеж – стадии выполнения, требования. Спецификация. Эскизы деталей. Рабочая документация. Деталирование сборочных чертежей
5	Виды соединений	Изделия, классификация. Виды соединений.

	деталей и правила их изображения на	Разъемные и неразъемные соединения деталей
	чертежах	
6	Изучение и применение	Графический редактор NanoCAD:
	САПР	пользовательский интерфейс, управление экраном,
		инструменты черчения, редактирования, настройка
		слоев и других параметров, выполнение
		построений, сохранение файла в различных
		форматах (dwg, pdf, dwt)

4.3 Перечень лабораторных работ

Лабораторных работ не предусмотрено

4.4 Перечень практических занятий

Учебный год № <u>1</u>

Nº	Темы практических (семинарских) занятий	Кол-во академических часов
1	Проецирование точки. Проецирование прямой. Прямые общего и частного положения. Проецирование плоскости. Плоскости общего и частного положения. Выполнение графической работы «Пересечение прямой с плоскостью»	2
2	Выполнение графической работы «Построение сквозного отверстия в гранной поверхности» и «Построение сквозного отверстия в поверхности вращения»	2
3	Выполнение графической работы «Пересечение поверхности плоскостью» и «Пересечение поверхностей»	2
4	ГОСТ 2.305-2008 «Изображения: виды, разрезы, сечения»; ГОСТ 2.307-2011 «Нанесение размеров и предельных отклонений»; ГОСТ 2.317-2011 «Аксонометрические проекции». Выполнение графической работы «Построение трех проекций детали с выполнением разрезов и построение аксонометрической проекции»	2
5	Резьбовые соединения деталей. Выполнение графической работы «Соединение шпилечное». Оформление сборочного чертежа «Соединение шпилечное» и спецификации к нему	2
6	Выполнение графической работы «Деталирование сборочного чертежа»	2

4.5 Самостоятельная работа

Учебный год № <u>1</u>

No	№ Вид СРС	Кол-во академических
142	DIIA CI C	часов

1	Подготовка к зачёту	42
2	Подготовка к практическим занятиям	26
3	Проработка разделов теоретического материала	10
4	Расчетно-графические и аналогичные работы	44

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: Видеоконференция

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по практическим занятиям

- 1. Теоретическая информация по курсу. Инженерная и компьютерная графика// Электронное обучение ИрНИТУ. URL: https://el.istu.edu/course/view.php?id=1379 (дата обращения 10.06.2025). Режим доступа: для зарегистрир. пользователей.
- 2. Начертательная геометрия: учебное пособие / Г.В. Кузнецова, М.А. Иванова [и др.]; Иркутский национальный исследовательский технический университет. Иркутск: ИРНИТУ, 2019. 168 с.: ил.
- 3. Компьютерные технологии в инженерной графике: учеб. пособие / О.В.Белокрылова, Л.Г.Климова, М.А.Иванова. Иркутск: Изд-во ИРНИТУ, 2020. 132 с.
- 4. Основы технического черчения в курсе инженерной графики [Электронный ресурс]: учебное пособие / И.И. Кострубова, М.А. Иванова, С.Б. Клименкова [и др.], 2020. 186 с.

5.1.2 Методические указания для обучающихся по самостоятельной работе:

Теоретическая информация по курсу. Инженерная и компьютерная графика// Электронное обучение ИрНИТУ. - URL: https://el.istu.edu/course/view.php?id=1379 (дата обращения 10.06.2025). Режим доступа: для зарегистрир. пользователей.

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 учебный год 1 | Проверочная работа

Описание процедуры.

Проверочная работа представляет собой задание на графическую самостоятельную работу. Номер варианта соответствует последней цифре номера зачетной книжки обучающегося. Графическая часть задания переносится по заданным размерам и масштабу на заданный или выбранный формат. Формат и масштаб должны соответствовать ГОСТам. Проверочная графическая работа представляется преподавателю для проверки в электронном виде через систему электронного обучения, сохраненная в формате pdf или в виде четкой фотографии чертежа, или скана чертежа. Самостоятельные проверочные (графические) работы (чертежи), проверенные преподавателем и имеющие оценку не менее "3" представляются обучающимся к защите на зачетном занятии.

Порядок выполнения работы

1) Изучить задание на проверочную работу, выданное индивидуально, согласно варианту;

- 1) Подготовить формат для выполнения работы по ГОСТ 2.301, заполнить основную надпись чертежа и дополнительную графу (верхний левый угол) по ГОСТ 2.104 чертежным шрифтом "тип Б" по ГОСТ 2.304;
- 2) Выполнить предварительную компоновку изображений на формате;
- 3) Перестроить заданные изображения (проекции, виды) и построить недостающие, выполнить требуемые построения;
- 6) Проставить размеры и оформить чертеж по ГОСТам.

Критерии оценивания.

Проверочная работа (чертеж) выполнен без ошибок, оформлен в соответствии с требованиями ГОСТов – работа «зачтена».

Проверочная работа (чертеж) выполнен с ошибками, оформлен в соответствии с требованиями ГОСТов – работа «не зачтена».

Проверочная работа (чертеж) выполнен с ошибками, не оформлен в соответствии с требованиями ГОСТов – работа «не зачтена».

Проверочная работа (чертеж) выполнен без ошибок, не оформлен в соответствии с требованиями ГОСТов – работа «не зачтена».

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
ОПК ОС-2.2	Ориентируется в методах построения двухмерных электронных чертежей с помощью современных программных средств, поиска и обработки справочной информации	Устное собеседование по теоретическим вопросам и/или выполнение практических заданий
ОПК ОС-1.3	Знает общие методы построения, разработки и чтения чертежей профессиональной сферы, алгоритмы решения графических задач	Устное собеседование по теоретическим вопросам и/или выполнение практических заданий

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Учебный год 1, Типовые оценочные средства для проведения дифференцированного зачета по дисциплине

6.2.2.1.1 Описание процедуры

К зачету допускаются обучающиеся, выполнившие все виды контактной работы в полном объеме академических часов и успешно прошедшие все формы текущего контроля. Зачет проводится в виде собеседования по выполненным проверочным работам. Обучающийся, предоставивший весь комплект правильно выполненных за семестр заданий и правильно ответивший на все основные и дополнительные вопросы преподавателя получает «зачет» с соответствующей оценкой.

В случае предоставления не полного комплекта правильно выполненных за семестр задний для получения «зачета» обучающийся должен правильно выполнить дополнительное задание, представить правильно выполненное графическое решение этого задания и правильно ответить на дополнительные вопросы преподавателя. Так же обучающемуся предлагается в присутствии преподавателя на своем формате (выполненной проверочной работе) выполнить несколько графических построений.

Пример задания:

Вопросы и геометрические построения по индивидуальным проверочным работам

- 1. Проверочная работа "Пересечение прямой с плоскостью" Вопросы:
- что необходимо было определить в этой задаче;
- сколько проекций изображено;
- как называется метод определения видимости участков проекции прямой;
- в каком масштабе выполнено изображение;
- назовите координаты точки А;
- что такое горизонталь / фронталь.

Геометрические построения:

- провести прямую, принадлежащую плоскости;
- найти недостающие проекции заданной точки / прямой, принадлежащей прямой / плоскости.
- 2. Проверочная работа "Построение сквозного отверстия в гранной поверхности" Вопросы:
- назовите заданную поверхность;
- к какому классу поверхностей относится заданная поверхность;
- сколько проекций изображено;
- какая поверхность образовала сквозное отверстие в пирамиде;
- отверстие по форме призматическое или цилиндрическое;
- в каком масштабе выполнено изображение;
- высота пирамиды;
- на какой высоте от основания пирамиды расположена верхняя часть отверстия.

Геометрические построения:

- провести прямую, принадлежащую поверхности пирамиды, и расположенную параллельно ее основанию;
- найти недостающие проекции заданной точки / прямой, принадлежащей поверхности пирамиды;
- построить горизонтальную / профильную проекции линии пересечения фронтально-проецирующей плоскости с поверхностью пирамиды;
- провести любую прямую, принадлежащую поверхности пирамиды;
- построить натуральную величину фигуры сечения поверхности пирамиды фронтально-проецирующей плоскостью.
- 3. Проверочная работа "Построение сквозного отверстия в поверхности вращения"

Вопросы:

- назовите заданную поверхность;
- к какому классу поверхностей относится заданная поверхность;
- сколько проекций изображено;
- какая поверхность образовала сквозное отверстие в конусе;
- отверстие по форме призматическое или цилиндрическое;
- в каком масштабе выполнено изображение;
- высота конуса;
- на какой высоте от основания конуса расположена нижняя часть отверстия.

Геометрические построения:

- провести прямую, принадлежащую поверхности конуса, и расположенную параллельно ее основанию;
- найти недостающие проекции заданной точки / прямой, принадлежащей поверхности конуса;
- построить горизонтальную / профильную проекции линии пересечения фронтальнопроецирующей плоскости с поверхностью конуса;
- провести любую прямую, принадлежащую поверхности конуса;
- построить натуральную величину фигуры сечения поверхности конуса фронтально-проецирующей плоскостью.

4. Проверочная работа "Пересечение поверхности плоскостью" Вопросы:

- из каких поверхностей состоит заданная составная поверхность;
- сколько проекций изображено на чертеже;
- показать расположение фронтальной / горизонтальной / профильной проекции заданной составной поверхности;
- в каком масштабе выполнено изображение;
- высота составной поверхности;
- какое положение в пространстве занимает заданная плоскость;
- что необходимо было построить согласно заданию;
- как называется четвертое изображение, построенное на этом формате.

Геометрические построения:

- провести прямую, принадлежащую составной поверхности, и расположенную параллельно ее основанию;
- построить недостающие проекции заданной точки / прямой, принадлежащей составной поверхности;
- построить горизонтальную / профильную проекции линии пересечения фронтально-проецирующей плоскости с составной поверхностью;
- провести любую прямую, принадлежащую составной поверхности;
- построить натуральную величину фигуры сечения составной поверхности фронтальнопроецирующей плоскостью.

5. Проверочная работа "Пересечение поверхностей" Вопросы:

- что необходимо было построить согласно заданию;
- какие поверхности заданы на чертеже;
- сколько проекций изображено на чертеже;
- в каком масштабе выполнено изображение;
- назовите размеры поверхности;
- какой метод вы использовали для выполнения задания;
- какой тип задач на пересечение поверхностей у вас задан.

Геометрические построения:

- провести прямую, принадлежащую поверхности, и расположенную параллельно ее основанию;
- построить недостающие проекции заданной точки / прямой, принадлежащей поверхности;
- построить горизонтальную / профильную проекции линии пересечения фронтально-проецирующей плоскости с поверхностью;
- провести любую прямую, принадлежащую поверхности;
- построить натуральную величину фигуры сечения поверхности фронтальнопроецирующей плоскостью.
- 6. Проверочная работа "Построение трех проекций детали с выполнением разрезов и построение аксонометрической проекции"

Вопросы:

- назовите виды детали;
- сколько цилиндрических отверстий в детали;
- кокой вы выполнили разрез;
- показать расположение вида спереди / сверху / слева;
- в каком масштабе выполнен чертеж;
- высота детали;
- назовите построенное изображение;
- в каком масштабе выполнено изображение;
- сколько составляет угол наклона штриховки.

Геометрические построения:

- по заданию преподавателя в NanoCAD построить дополнительный элемент детали на двух / трех её проекциях
- показать создание нового слоя в в NanoCAD;
- проставить еще один размер;
- построить отдельно изометрию части детали;
- показать как включить режим изометрического проектирования в NanoCAD.
- 7. Проверочная работа "Соединение шпилечное"

Вопросы:

- назовите состав деталей соединения шпилечного;
- что входит в расчет длины шпильки;
- что означает обозначение на чертеже "М30";
- в каком масштабе выполнено изображение;
- длина шпильки;
- номинальный диаметр резьбы шпильки.

Геометрические построения:

- построить цилиндрический стержень произвольной длины, имеющий резьбу М24;
- показать построение меньшего диаметра резьбы шпильки на виде слева в NanoCAD
- 8. Проверочная работа "Деталирование сборочного чертежа" Вопросы:
- назовите изделие для которого выполнен сборочный чертеж по вашему варианту задания;
- как называется деталь, имеющая позиционный номер "1" / "2" на сборочном чертеже вашего варианта;
- что означает обозначение на чертеже "М ";
- в каком масштабе выполнено изображение;

- назовите материал детали, имеющей позиционный номер "1" / "2". Γ еометрические построения:
- выполнить построение вида снизу / справа детали, имеющей позиционный номер "1" / "2":
- построить на чертеже детали дополнительный конструктивный элемент по заданию преподавателя._

6.2.2.1.2 Критерии оценивания

Отлично	Хорошо	Удовлетворительн о	Неудовлетворительно
Знает общие	Знает общие	Знает, но путает	Не знает общие
методы	методы	общие методы	методы построения,
построения,	построения,	построения,	разработки и чтения
разработки и	разработки и	разработки и чтения	чертежей
чтения чертежей	чтения чертежей	чертежей	профессиональной
профессиональной	профессиональной	профессиональной	сферы, алгоритмы
сферы, алгоритмы	сферы, алгоритмы	сферы, алгоритмы	решения графических
решения	решения	решения	задач. Не
графических	графических	графических задач.	ориентируется в
задач.	задач, допускает	С трудом	методах построения
Ориентируется в	незначительные	ориентируется в	двухмерных
методах	ошибки.	методах построения	электронных чертежей
построения	Ориентируется в	двухмерных	с помощью
двухмерных	методах	электронных	современных
электронных	построения	чертежей с	программных средств,
чертежей с	двухмерных	помощью	поиска и обработки
помощью	электронных	современных	справочной
современных	чертежей с	программных	информации
программных	помощью	средств, поиска и	
средств, поиска и	современных	обработки	
обработки	программных	справочной	
справочной	средств, поиска и	информации	
информации	обработки		
	справочной		
	информации		

7 Основная учебная литература

- 1. Белокрылова О. В. Компьютерные технологии в инженерной графике : учебное пособие / О. В. Белокрылова, Л. Г. Климова, М. А. Иванова, 2020. 132.
- 2. Основы технического черчения в курсе инженерной графики : учебное пособие / И. И. Кострубова, М. А. Иванова, С. Б. Клименкова [и др.], 2020. 186.
- 3. Инженерная и компьютерная графика. Теория построения чертежа: учебное пособие / Е. В. Верхотурова, С. Ю. Павликова, М. А. Иванова, О. В. Белокрылова, 2023. 174.

8 Дополнительная учебная литература и справочная

1. Павликова С. Ю. Инженерная графика с применением NanoCAD : учебное пособие / С. Ю. Павликова, А. А. Федяев, А. Ю. Перелыгина, 2025. - 109.

2. Чекмарев А. А. Инженерная графика : учеб. для немашиностроит. специальностей вузов / А. А. Чекмарев, 2007. - 380.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/
- 3. https://cadinstructor.org/eg/lectures/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/

11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем

- 1. Microsoft Windows Seven Professional [1x100] RUS (проведен апгрейд с Microsoft Windows Seven Starter [1x100]) поставка 2010
- 2. Microsoft Windows Seven Professional [1x1000] RUS (проведен апгрейд с Microsoft Windows Seven Starter [5x200])-поставка 2010
- 3. Microsoft Windows Seven Professional [1x500] RUS (проведен апгрейд с Microsoft Windows Seven Starter [1x500])_поставка 2010
- 4. Microsoft Windows Seven Professional (Microsoft Windows Seven Starter) Seven, Vista, XP_prof_64, XP_prof_32 поставка 2010
- 5. Microsoft Office Standard 2010 RUS поставка 2010 (артикул 021-09683)
- 6. NanoCAD 24 Платформа для учебного процесса

12 Материально-техническое обеспечение дисциплины

1. Учебная аудитория, включающая рабочее место преподавателя (стол, стул, персональный компьютер со всеми комплектующими, лицензионное программное обеспечение, меловая или маркерная доска, проектор, экран, пульт). Компьютер имеет доступ в сеть Интернет и подключен к корпоративной компьютерной сети ИРНИТУ.