Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Структурное подразделение «Сибирская школа геонаук»

УТВЕРЖДЕНА:

на заседании ДОТ Протокол №29 от 10 апреля 2025 г.

Рабочая программа дисциплины

«ТЕОРИЯ ФГМ»						
Специальность: 21.05.03 Технология геологической разведки						
Специальность. 21.03.03 технология геологической разведки						
Технология и техника разведки месторождений полезных ископаемых						
Квалификация: Горный инженер-буровик						
Форма обучения: очная						

Документ подписан простой электронной подписью Составитель программы: Ланько Анна Викторовна Дата подписания: 01.07.2025

Документ подписан простой электронной подписью Утвердил: Ланько Анна Викторовна Дата подписания: 01.07.2025

Документ подписан простой электронной подписью Согласовал: Карпиков Александр Владимирович Дата подписания: 02.07.2025

1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

1.1 Дисциплина «Теория ФГМ» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ПК-2 Способность выполнять работы по	
проектированию технологических процессов для	ПК-2.3
проведения горнопроходческих работ	
УК-1 Способен осуществлять критический анализ	
проблемных ситуаций на основе системного подхода,	УК-1.16
вырабатывать стратегию действий	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ПК-2.3	Способен учитывать теорию ФГМ при выполнении работы по проектированию технологических процессов для проведения горнопроходческих работ учитывая доставку материалов и оборудования	Знать Основные положения теории физико-геологического моделирования (ФГМ): понятие, виды и этапы построения физических, геологических и физико-геологических моделей, их роль в проектировании горнопроходческих работ. Принципы взаимосвязи геологических, физических и технологических параметров при моделировании месторождений, включая учет структуры, свойств пород, гидрогеологических и инженерно-геологических условий Уметь Применять теорию ФГМ для анализа геолого-геофизической информации и формирования моделей, необходимых для проектирования технологических процессов горнопроходческих работ Владеть Приемами комплексного анализа и интерпретации результатов моделирования для обоснования проектных решений по доставке материалов, размещению оборудования и организации работ.
УК-1.16	Демонстрация навыков осуществления критического анализа проблемных ситуаций физико-геологического	Знать Современные методы и подходы к критическому анализу моделей: геостатистический анализ, имитационное моделирование,
	моделирования	методы верификации и валидации моделей, междисциплинарные и

интеграционные подходы
Уметь Анализировать исходные
данные и выявлять их ограничения,
оценивать влияние качества и
объёма информации на результат
моделирования
Владеть навыками применения
методов критического анализа для
выявления слабых мест в
построенных моделях, сравнивать
альтернативные сценарии и
оценивать последствия проектных
решений

2 Место дисциплины в структуре ООП

Изучение дисциплины «Теория ФГМ» базируется на результатах освоения следующих дисциплин/практик: «Теоретические основы регистрации и обработки геолого-геофизических данных»

Дисциплина является предшествующей для дисциплин/практик: «Геофизические исследования скважин», «Методы компьютерного проектирования процессов бурения»

3 Объем дисциплины

Объем дисциплины составляет – 3 ЗЕТ

Вид учебной работы	Трудоемкость в академических часах (Один академический час соответствует 45 минутам астрономического часа)		
	Всего	Семестр № 7	
Общая трудоемкость дисциплины	108	108	
Аудиторные занятия, в том числе:	32	32	
лекции	16	16	
лабораторные работы	0	0	
практические/семинарские занятия	16	16	
Самостоятельная работа (в т.ч. курсовое проектирование)	76	76	
Трудоемкость промежуточной аттестации	0	0	
Вид промежуточной аттестации (итогового контроля по дисциплине)	Зачет	Зачет	

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр № 7

	Виды контактной работы						<u> </u>	DC.	Форма	
No	Наименование	Лек	ции	ЛР		ПЗ(СЕМ)		CPC		Форма
п/п	раздела и темы дисциплины	No	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	No	Кол. Час.	текущего контроля

1	2	3	4	5	6	7	8	9	10	11
1	1.Основы построения физико-геологических моделей (ФГМ)	1	2			1	3	1, 3, 4	9	Устный опрос
2	2. Петрофизические основы ФГМ и выделение структурновещественных комплексов	2	4			2	5	1, 3,	12	Устный опрос
3	3. Этапы формирования и верификации ФГМ	1	2			3	5	1, 3, 4	13	Устный опрос
4	4. Интеграция геолого-геофизических данных в ФГМ для оптимизации буровых процессов	3	4					1, 3,	17	Устный опрос
5	5. Применение ФГМ для прогнозирования и управления рисками при проведении буровых работ	2	4			4	3	1, 2, 3, 4	25	Устный опрос
	Промежуточная аттестация									Зачет
	Всего		16				16		76	

4.2 Краткое содержание разделов и тем занятий

Семестр № 7

No	Тема	Краткое содержание
1	1.Основы построения	Понятие ФГМ, цели и задачи моделирования.
	физико-геологических	Классификация моделей: геологические,
	моделей (ФГМ)	физические, физико-геологические и их
		взаимосвязь.
		Требования к исходным данным, особенности
		выбора объектов моделирования.
2	2. Петрофизические	Роль петрофизической информации в построении
	основы ФГМ и	ФГМ.
	выделение структурно-	Методы выделения и классификации структурно-
	вещественных	вещественных комплексов.
	комплексов	Значение доминантных физических свойств пород
		при проектировании буровых работ
3	3. Этапы формирования	Последовательность построения ФГМ: постановка
	и верификации ФГМ	задачи, априорное моделирование, расчет
		параметров, построение моделей физических
		полей.
		Примеры априорных и апостериорных ФГМ

		Методы проверки и оценки адекватности ФГМ
		реальным геологическим условиям
4	4. Интеграция геолого-	Использование комплекса геологических и
	геофизических данных	геофизических данных для повышения точности
	в ФГМ для	моделей.
	оптимизации буровых	Применение интегрированных (обобщённых)
	процессов	ФГМ для выбора оптимальных маршрутов и
		технологий бурения.
		Особенности моделирования физических полей и
		их связь с задачами буровых работ
5	5. Применение ФГМ	Использование ФГМ для оценки геологических
	для прогнозирования и	рисков, связанных с бурением (неоднородность
	управления рисками	разреза, водопритоки, аварийные ситуации).
	при проведении	Прогнозирование физических свойств пород по
	буровых работ	стволу скважины.
		Примеры практического применения ФГМ при
		планировании и сопровождении буровых работ

4.3 Перечень лабораторных работ

Лабораторных работ не предусмотрено

4.4 Перечень практических занятий

Семестр № 7

Nº	Темы практических (семинарских) занятий	Кол-во академических часов
1	Анализ исходных геолого-геофизических данных для построения ФГМ	3
2	Построение и описание физико-геологической модели участка буровых работ	5
3	Комплексная интерпретация результатов геофизических исследований скважин	5
4	Оценка влияния физико-геологических моделей на проектирование буровых работ	3

4.5 Самостоятельная работа

Семестр № 7

Nº	Вид СРС	Кол-во академических часов
1	Оформление отчетов по лабораторным и практическим работам	21
2	Подготовка к зачёту	10
3	Подготовка к практическим занятиям	10
4	Проработка разделов теоретического материала	35

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: Дискуссия

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по практическим занятиям

Практические занятия предназначены для закрепления теоретических знаний, формирования умений применять методы физико-геологического моделирования (ФГМ) и развития профессиональных компетенций, необходимых для будущей работы в области разведки и бурения месторождений полезных ископаемых.

Практические занятия могут проводиться фронтально (вся группа выполняет одно задание), в микрогруппах (2–5 человек) или индивидуально, в зависимости от характера задания и целей занятия.

В начале занятия проводится проверка теоретической готовности студентов к выполнению задания (устный опрос, мини-тест).

Отчет по выполнению практической работы оформляется по установленной структуре: цель работы, исходные данные, ход выполнения, результаты, анализ, выводы, ответы на контрольные вопросы.

Все графики, таблицы и схемы должны быть аккуратно оформлены и подписаны. Отчет сдается в электронном. Оценка практической работы осуществляется по следующим критериям: полнота и правильность выполнения задания, качество оформления отчета, самостоятельность анализа, обоснованность выводов. Итоговая оценка объявляется после проверки отчета и устного собеседования по теоретическим вопросам и обсуждения полученных результатов в ходе выполнения практической работы.

5.1.2 Методические указания для обучающихся по самостоятельной работе:

Методические указания для самостоятельной работы включают:

1. Подготовка к практическим занятиям

Изучите соответствующий раздел лекционного материала и рекомендуемую литературу. Особое внимание уделяйте ключевым понятиям, определениям, этапам построения и видам физико-геологических моделей (Φ ГМ).

Ознакомьтесь с формулировкой задания к практической работе.

Определите цель занятия, перечень исходных данных, используемые методы и программное обеспечение, если оно требуется.

Составьте список вопросов, которые возникли при изучении материала, для обсуждения на практическом занятии.

2. Проработка разделов теоретического материала

Ведите конспект лекций и дополнительной литературы по всем темам курса.

Это поможет систематизировать знания и упростит подготовку к практическим и итоговым работам.

Используйте учебные пособия, электронные ресурсы, презентации, примеры моделей и отчётов.

При необходимости повторяйте отдельные темы, уделяя внимание современным методам моделирования, алгоритмам обработки данных, примерам построения моделей для различных типов месторождений.

Составляйте краткие схемы, таблицы и опорные конспекты по ключевым вопросам. Проверяйте усвоение материала с помощью вопросов для самоконтроля или тестовых заданий, если они предусмотрены программой курса.

3. Оформление отчетов по практическим работам Строго соблюдайте структуру отчёта:

Титульный лист (название работы, ФИО, группа, дата)

Цель и задачи работы

Краткая теоретическая часть (основные понятия, используемые методы)

Описание исходных данных и методики выполнения работы

Ход выполнения задания (пошаговое описание действий, расчёты, построение моделей)

Полученные результаты (графики, таблицы, схемы, иллюстрации)

Анализ и интерпретация результатов

Выводы по работе

Список использованных источников

Все графики, таблицы и схемы должны быть аккуратно оформлены и подписаны.

Формулы и расчёты сопровождайте пояснениями, указывайте единицы измерения.

В отчёте обязательно отражайте самостоятельный анализ и обоснование выводов.

Не ограничивайтесь только описанием полученных данных — анализируйте их с точки зрения теории и практики.

Соблюдайте требования к объёму и срокам сдачи работы, установленные преподавателем. Перед сдачей проверьте отчёт на полноту, грамотность и соответствие требованиям ДОТ.

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 семестр 7 | Устный опрос

Описание процедуры.

Опрос может проводиться:

Фронтально — в форме беседы с группой, когда вопросы задаются всей группе, а ответы даются по очереди или по желанию.

Индивидуально — каждый студент отвечает на один или несколько вопросов, давая развернутый, связный ответ, часто с примерами и пояснениями.

Комбинированно — сочетаются оба подхода, а также используются дополнительные методы (например, письменные карточки, рецензирование ответов товарищей)

Критерии оценивания.

полнота и правильность ответа; понимание и осознанность материала; логичность и последовательность изложения; корректность терминологии; способность отвечать на уточняющие вопросы

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

		Средства
Индикатор достижения		(методы)
	Критерии оценивания	оценивания
компетенции		промежуточной
		аттестации

ПК-2.3	Способен учитыват	устное	
	выполнении	работы по	собеседование по
	проектированию	технологических	теоретическим
	процессов дл	тя проведения	вопросам
	горнопроходческих		
	доставку материало	ов и оборудования	
УК-1.16	Демонстрация навы	устное	
	критического ана	ализа проблемных	собеседование по
	ситуаций физ	вико-геологического	теоретическим
	моделирования	вопросам	

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 7, Типовые оценочные средства для проведения зачета по дисциплине

6.2.2.1.1 Описание процедуры

Зачет сдается в период экзаменационной сессии, предусмотренной учебным планом и календарным учебным графиком.

Студенты допускаются к сдаче зачета по дисциплине при выполнении всех запланированных форм текущего контроля согласно рабочей программе дисциплины. На зачет студент должен явиться с зачетной книжкой. Зачет проводится в устной форме.

6.2.2.1.2 Критерии оценивания

Зачтено	Не зачтено	
выставляется студенту, твердо знающему	выставляется студенту, который не знает	
программный материал, грамотно и по	значительной части программного	
существу его излагающему, который не	материала, допускает существенные	
допускает существенных неточностей в	ошибки, не может ответить на	
ответе на вопросы, правильно применяет	дополнительные вопросы	
теоретические положения при решении		
практических задач;		

7 Основная учебная литература

- 1. В. А. Белкина, С. Р. Бембель, А. А. Забоева, Н. В. Санькова. Основы геологического моделирования (часть 1): учебное пособие. Тюмень: ТюмГНГУ, 2015. 168 с.
- 2. Моделирование геолого-геофизических параметров. Двухмерное моделирование : учебник / В. М. Александров, В. А. Белкина, Н. В. Санькова, В. В. Мазуркевич. Вологда : Инфра-Инженерия, 2023. 236 с. ISBN 978-5-9729-1376-3. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/346739 (дата обращения: 28.06.2025). Режим доступа: для авториз. пользователей.

3. Теория физико-геологического моделирования : учебное пособие / Г. С. Вахромеев, А. Ю. Давыденко, А. Г. Дмитриев, В. С. Канайкин. — Иркутск : ИРНИТУ, 2020. — 114 с. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/325154 (дата обращения: 28.06.2025). — Режим доступа: для авториз. пользователей.

8 Дополнительная учебная литература и справочная

- 1. Физико-геологическое моделирование верхней части разреза в условиях многолетней мерзлоты / Γ . С. Вахромеев, О. В. Павлов, В. И. Джурик ; Ред. В. Н. Табулевич, 1989. 127.
- 2. Физико-геологическое моделирование геологических структур : метод. рекомендации / Н. Р. Бурьян, 1991. 101.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/

11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем

- 1. Лицензионное программное обеспечение Системное программное обеспечение
- 2. Лицензионное программное обеспечение Пакет прикладных офисных программ
- 3. Лицензионное программное обеспечение Интернет-браузер

12 Материально-техническое обеспечение дисциплины

- 1. Учебная аудитория для проведения лекционных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оснащение: комплект учебной мебели, рабочее место преподавателя, доска. Мультимедийное оборудование (в том числе переносное): мультимедийный проектор, экран, акустическая система, компьютер с выходом в интернет.
- 2. Учебная аудитория для проведения лабораторных/практических (семинарских) занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оснащение: комплект учебной мебели, рабочее место преподавателя, доска. Мультимедийное оборудование (в том числе переносное): мультимедийный проектор, экран, акустическая система, компьютер с выходом в интернет.
- 3. компьютерный класс