Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Структурное подразделение «Сибирская школа геонаук»

УТВЕРЖДЕНА:

на заседании ДОТ Протокол №29 от 10 апреля 2025 г.

Рабочая программа дисциплины

«РАДИОМЕТРИЯ И ЯДЕРНАЯ ГЕОФИЗИКА»						
G 24.05.00 T						
Специальность: 21.05.03 Технология геологической разведки						
Геофизические методы поиска и разведки месторождений полезных ископаемых						
Квалификация: Горный инженер-геофизик						
Форма обучения: очная						

Документ подписан простой электронной подписью Составитель программы: Ланько Анна Викторовна Дата подписания: 04.09.2025

Документ подписан простой электронной подписью Утвердил: Ланько Анна Викторовна Дата подписания: 04.09.2025

Документ подписан простой электронной подписью Согласовал: Паршин Александр Вадимович Дата подписания: 15.09.2025

- 1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы
- 1.1 Дисциплина «Радиометрия и ядерная геофизика» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ПК-1 Способен проводить разработку и исследование	
теоретических и экспериментальных моделей	
объектов профессиональной деятельности в	ПК-1.2
различных областях, связанных с профессиональной	
деятельностью	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ПК-1.2	Использует знания о радиоактивности и ядерной геофизике для разработки и исследования теоретических и экспериментальных моделей объектов в своей профессиональной области	Знать Основные законы радиоактивности, физические принципы ядерной геофизики, методы создания и анализа теоретических и экспериментальных моделей геологических объектов, а также особенности их функционирования в профессиональной области. Уметь Разрабатывать и применять теоретические модели радиоактивных процессов и ядерногеофизических явлений, проводить эксперименты и измерения для исследования физических свойств объектов, интерпретировать результаты моделей и экспериментов с целью решения профильных задач. Владеть Навыками построения, настройке и проверке теоретических и экспериментальных моделей объектов геологической среды с использованием радиометрических и ядерно-геофизических методов, включая обработку и анализ данных, а также применением специализированного программного обеспечения и экспериментального оборудования.

2 Место дисциплины в структуре ООП

Изучение дисциплины «Радиометрия и ядерная геофизика» базируется на результатах освоения следующих дисциплин/практик: «Введение в профессиональную деятельность», «Физика»

Дисциплина является предшествующей для дисциплин/практик: «Геофизические исследования скважин», «Геохимические методы поисков МПИ», «Комплексная интерпретация геолого-геофизических данных»

3 Объем дисциплины

Объем дисциплины составляет – 3 ЗЕТ

Вид учебной работы	Трудоемкость в академических часах (Один академический час соответствует 45 минутам астрономического часа)		
	Bcero	Семестр № 5	
Общая трудоемкость дисциплины	108	108	
Аудиторные занятия, в том числе:	32	32	
лекции	16	16	
лабораторные работы	16	16	
практические/семинарские занятия	0	0	
Самостоятельная работа (в т.ч. курсовое проектирование)	40	40	
Трудоемкость промежуточной аттестации	36	36	
Вид промежуточной аттестации (итогового контроля по дисциплине)	Экзамен	Экзамен	

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр № 5

	Наименование		Виды контактной работы		Виды контактной работы			СРС		Ф
No		Лек	Лекции ЛР		[P	ПЗ(СЕМ)				Форма
п/п	п/п раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	1. Введение в радиометрию и ядерную геофизику	1	2							Оценка знаний по соответств ующей теме
2	2.Физические основы радиометрически х и ядерно-геофизических методов	2	2	2	2					Оценка знаний по соответств ующей теме
3	3.Оборудование и технические средства радиометрии и ядерной	3	2	1	2			3	10	Оценка знаний по соответств ующей теме

	геофизики								
4	4.Методы обработки и интерпретации радиометрически х данных	4	2	3	2				Оценка знаний по соответств ующей теме
5	5.Применение радиометрии и ядерной геофизики в оптимизации геологоразведочных процессов	5	2	5	4		2	10	Оценка знаний по соответств ующей теме
6	6.Прогнозировани е процессов функционировани я геологических объектов с помощью радиометрии	6	2				4	10	Оценка знаний по соответств ующей теме
7	7.Практические методы проведения радиометрически х и ядерногеофизических исследований и полевые работы	7	4	4, 6	6		1	10	Оценка знаний по соответств ующей теме
	Промежуточная аттестация							36	Экзамен
	Всего		16		16			76	

4.2 Краткое содержание разделов и тем занятий

Семестр № <u>5</u>

N₂	Тема	Краткое содержание
1	1. Введение в	Основные понятия, история развития и области
	радиометрию и	применения методов. Обзор предметной области,
	ядерную геофизику	историческое развитие радиометрических и
		ядерных методов в геологоразведке. Значение
		данных методов для изучения природных ресурсов
		и диагностики геологических процессов. Роль
		радиометрии и ядерной геофизики в современных
		технологиях разведки и мониторинга.
2	2.Физические основы	Принципы радиоактивности, виды излучений и их
	радиометрических и	взаимодействие с минералами. Природа
	ядерно-геофизических	радиоактивного излучения (альфа-, бета-, гамма-
	методов	излучения, нейтроны) и механизмов их
		взаимодействия с горными породами и
		минералами. Принципы радиоактивного распада,
		виды радионуклидов, методы выявления и
		измерения излучения. Теоретические основы
		регистрации и анализа ядерных процессов.
3	3.Оборудование и	Типы приборов, их устройство и работа в полевых
	технические средства	условиях (Подробный разбор типов и
	радиометрии и ядерной	характеристик приборов: сцинтилляционные и

	геофизики	полупроводниковые детекторы, гамма-
	Γοφεισείνει	спектрометры, нейтронные генераторы, дозиметры и прочее оборудование. Технические особенности, возможности и ограничения приборов. Методы калибровки, подготовка к полевым условиям и обеспечение безопасности при работе с радиоактивными источниками).
4	4.Методы обработки и интерпретации радиометрических данных	Алгоритмы, программное обеспечение и техники анализа. Приемы цифровой обработки сигналов, фильтрация шума, коррекция фоновых воздействий. Применение статистических и математических методов для интерпретации спектров излучения. Использование программных средств и алгоритмов для построения моделей и визуализации данных. Анализ типовых геофизических аномалий и их связь с геологическими объектами.
5	5.Применение радиометрии и ядерной геофизики в оптимизации геологоразведочных процессов	Использование данных для повышения эффективности разведки. Практические примеры использования данных методов для повышения точности и эффективности разведочных работ. Составление карт радиоактивности, выделение перспективных зон, планирование бурения и контроль качества добычи. Оптимизация ресурсов и снижение затрат за счёт использования ядерногеофизических данных.
6	6.Прогнозирование процессов функционирования геологических объектов с помощью радиометрии	Моделирование динамики радиоактивных явлений с целью прогнозирования геологических изменений (например, миграция полезных ископаемых, деградация пород). Оценка состояния и устойчивости объектов, выявление аномалий и прогнозирование их развития. Внедрение прогностических моделей в системы управления и мониторинга.
7	7.Практические методы проведения радиометрических и ядерно-геофизических исследований и полевые работы	Организация и методика выполнения полевых измерений: подготовка оборудования, выбор точек наблюдения, проведение съемок. Обеспечение безопасности при работе с радиационным оборудованием. Обработка и первичный анализ данных непосредственно в полевых условиях. Документирование результатов и подготовка отчетной документации.

4.3 Перечень лабораторных работ

Семестр № $\underline{5}$

Nº	Наименование лабораторной работы	Кол-во академических часов
1	Изучение принципов работы радиометрического прибора	2
2	Определение радиоактивности горных пород и	2

	минералов	
3	Обработка и интерпретация гамма-спектров	2
4	Полевые измерения радиометрических характеристик	2
5	Использование радиометрических данных для оптимизации буровых работ	4
6	Моделирование и прогнозирование изменений радиометрических параметров геологического объекта	4

4.4 Перечень практических занятий

Практических занятий не предусмотрено

4.5 Самостоятельная работа

Семестр № <u>5</u>

No	Вид СРС	Кол-во академических часов
1	Оформление отчетов по лабораторным и практическим работам	10
2	Подготовка к зачёту	10
3	Подготовка к практическим занятиям (лабораторным работам)	10
4	Проработка разделов теоретического материала	10

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: Просмотр и обсуждение учебных видеофильмов

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по лабораторным работам:

Лабораторная работа 1. Изучение принципов работы радиометрического прибора Цель работы:

Познакомиться с устройством и принципом действия радиометрического оборудования, освоить методы измерения естественного радиоактивного фона и калибровки прибора. Оборудование и материалы:

- Сцинтилляционный или германиевый детектор;
- Стандартные источники излучения с известной активностью;
- Измерительный блок, компьютер с ПО для регистрации данных. Ход работы:
- 1. Ознакомьтесь с устройством прибора и правилами техники безопасности.
- 2. Включите прибор, установите начальные параметры измерения.
- 3. Измерьте уровень фонового гамма-излучения в лаборатории, зафиксируйте результаты.
- 4. Проведите калибровку прибора с использованием стандартных источников.
- 5. Сравните измеренные значения с контрольными данными источников.
- 6. Запишите результаты, сделайте выводы о точности и чувствительности прибора. Отчёт:

Формулировка цели, описание прибора, методика измерений, таблица полученных данных, графики (если есть), анализ результатов, выводы о работе прибора.

Лабораторная работа 2. Определение радиоактивности горных пород и минералов Цель работы:

Научиться измерять и сравнивать гамма-активность различных образцов горных пород и минералов, выявлять связи радиоактивности с минералогическим составом.

Оборудование и материалы:

- Радиометрический детектор;
- Набор образцов горных пород и минералов;
- Измерительный блок.

Ход работы:

- 1. Ознакомьтесь с образцами, изучите их минералогический состав (по каталогу или справочнику).
- 2. Проведите измерения гамма-активности каждого образца, фиксируя время, условия (расстояние, ориентация прибора).
- 3. Повторите измерения несколько раз для повышения точности.
- 4. Запишите результаты и рассчитайте средние значения активности каждого образца.
- 5. Сравните показатели радиоактивности в зависимости от типа породы и содержания урановых, ториевых или калиевых минералов.

Отчёт:

Цель, характеристика образцов, методика измерений, табличные данные, графики распределения активности, обсуждение корреляций, выводы.

Лабораторная работа 3. Обработка и интерпретация гамма-спектров Цель работы:

Освоить приемы регистрации гамма-спектров и методы их обработки для идентификации радионуклидов в образцах.

Оборудование и материалы:

- Гамма-спектрометр;
- Стандартные источники излучения и исследуемые образцы;
- Программное обеспечение для обработки спектров.

Ход работы:

- 1. Проведите регистрацию гамма-спектров образцов и стандартов.
- 2. Используйте программное обеспечение для калибровки энергетической шкалы.
- 3. Выполните идентификацию характерных пиков спектра, определите изотопы.
- 4. Произведите расчет активности отдельных радионуклидов.
- 5. Сравните результаты с табличными данными и проведите интерпретацию.

Отчёт:

Описание методики, спектры с подписями основных пиков, расчетная таблица изотопов и активности, выводы по составу и содержанию радионуклидов.

Лабораторная работа 4. Полевые измерения радиометрических характеристик Цель работы:

На практике освоить методику проведения полевых радиометрических съемок, научиться собирать и первично обрабатывать данные.

Оборудование и материалы:

- Переносной радиометрический прибор;
- Карта местности или участок для съемки;
- Блокнот для фиксации данных.

Ход работы:

- 1. Ознакомьтесь с маршрутом и объектом исследования.
- 2. Проведите калибровку прибора перед выходом в поле.
- 3. Выполните замеры в соответствии с сеткой точек съемки, фиксируя координаты и уровни радиоактивности.
- 4. Запишите все данные с указанием времени и условий проведения.
- 5. По возвращении выполните предварительную обработку данных, построение карты распределения активности.

Отчёт:

Обоснование выбора участка, схема маршрута, таблица замеров, карта распределения радиоактивности с комментариями, выводы о геологической значимости наблюдений.

Лабораторная работа 5. Использование радиометрических данных для оптимизации буровых работ

Цель работы:

Изучить применение радиометрических данных для определения перспективных горизонтов и корректировки плана бурения.

Оборудование и материалы:

- Набор радиометрических данных (реальных или смоделированных);
- Карты и геологические разрезы;
- Методы анализа.

Ход работы:

- 1. Проанализируйте данные по радиоактивности выбранной площадки.
- 2. Сопоставьте распределение активности с геологическими структурами.
- 3. Определите наиболее вероятные перспективные зоны для бурения.
- 4. Разработайте рекомендации по корректировке бурового плана с учетом радиометрических данных.

Отчёт:

Описание исходных данных, методы анализа, карта перспективных зон, обоснование рекомендаций, выводы по эффективности использования радиометрии.

Лабораторная работа 6. Моделирование и прогнозирование изменений радиометрических параметров геологических объектов

Цель работы:

Разработать и применить простую модель прогнозирования изменений радиоактивности под воздействием геологических процессов.

Оборудование и материалы:

- Компьютер с ПО для моделирования (например, Excel, MATLAB, специализированное ПО);
- Исходные данные о радионуклидном составе и геологических условиях. Ход работы:
- 1. Ознакомьтесь с гипотезой и параметрами моделирования (например, миграция радионуклидов, изменение концентраций с течением времени).
- 2. Постройте модель с использованием заданных начальных условий.
- 3. Проведите расчеты для нескольких сценариев изменения условий.
- 4. Проанализируйте результаты и сделайте выводы о возможных изменениях и рисках.

Отчёт:

Описание модели, исходные данные, расчетные результаты, графики динамики, анализ результатов, рекомендации для прогноза функционального состояния объекта. Общие требования

Перед началом работы изучить теоретический материал по теме лабораторной

работы.

- Ознакомиться с правилами безопасного обращения с лабораторным оборудованием.
- Готовить образцы согласно стандартным методикам подготовки керна и горных пород.
- Оформлять результаты в виде табличных данных, графиков и отчета с анализом и интерпретацией.
- Защищать результаты в устной форме перед преподавателем, ответить на вопросы по методике и физической природе параметров. Отчетность
- Каждый отчет должен содержать цель работы, описание методики, таблицы результатов, графики, расчеты, выводы и обсуждение.
- Отчет оформляется в соответствии с требованиями ГОСТ или внутренними методическими стандартами.
- Рекомендуется использовать пакеты Microsoft Office или специализированные программы для обработки данных и создания графиков.

5.1.2 Методические указания для обучающихся по самостоятельной работе:

Методические указания по видам самостоятельной работы

1. Подготовка к практическим занятиям (лабораторным работам) Цель:

Обеспечить качественную подготовку студентов к выполнению лабораторных работ, сформировать навыки системного подхода к постановке и решению практических задач. Рекомендации к выполнению:

Внимательно изучите методические указания к лабораторной работе, ознакомьтесь с целью, основными задачами и перечнем оборудования.

Изучите теоретический материал, связанный с темой лабораторной работы, чтобы понимать физические процессы и методы измерений.

Подготовьте рабочее место и ознакомьтесь с правилами техники безопасности при работе с радиометрическим оборудованием и радиоактивными источниками.

Составьте план ваших действий во время лабораторной работы (регистрация данных, последовательность измерений, ведение протокола).

При необходимости, потренируйтесь в пользовании программным обеспечением или инструментами, которые будут использоваться.

Результат:

Подготовленный отчет о выполнении лабораторной работы без ошибок, уверенное владение методикой проведения измерений и соблюдение техники безопасности.

2. Проработка разделов теоретического материала Цель:

Глубокое понимание ключевых понятий, теоретических основ и методик радиометрии и ядерной геофизики для их применения в профессиональной деятельности.

Рекомендации к выполнению:

Внимательно изучайте тексты лекций, учебников и рекомендованной литературы по тематике курса.

Выписывайте ключевые определения, формулы и основные этапы описанных методик.

Составляйте краткие конспекты или схемы по разделам для удобства повторения.

Решайте типовые задачи и задачи по анализу радиометрических данных для закрепления материала.

Используйте дополнительные источники (научные статьи, учебные видео), чтобы

расширить понимание и получить примеры применения.

Проводите взаимное обсуждение с коллегами по учебе для прояснения сложных вопросов. Результат:

Формирование прочных теоретических знаний, развитие навыков самостоятельного анализа и подготовки к экзаменам, осознанное применение знаний в лабораторных и практических условиях.

3. Подготовка к зачёту

Цель:

Комплексное повторение и систематизация материала курса для успешной проверки усвоения знаний и умений в форме зачета.

Рекомендации к выполнению:

Пересмотрите конспекты лекций, методические указания по лабораторным и практическим занятиям.

Систематизируйте знания по всем пройденным темам курса.

Выполните самоконтроль с использованием тестовых заданий, вопросов для подготовки и типовых задач.

Отработайте устные ответы на вопросы, связанные с принципами, методами и применением радиометрических и ядерно-геофизических методов.

При необходимости, проработайте проблемные места в теории и практике, обратитесь за консультацией к преподавателю.

Приобретите уверенность в своих знаниях и умениях посредством повторного слушания лекций или обсуждения с преподавателем и одногруппниками.

Результат:

Уверенное прохождение зачёта, демонстрация системных знаний основ радиометрии и ядерной геофизики, а также практических навыков их применения.

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 семестр 5 | Оценка знаний по соответствующей теме

Описание процедуры.

Оценка знаний по проводится через текущий контроль на лабораторных и лекционных занятиях. Опрос может проводиться:

Фронтально — в форме беседы с группой, когда вопросы задаются всей группе, а ответы даются по очереди или по желанию.

Индивидуально — каждый студент отвечает на один или несколько вопросов, давая развернутый, связный ответ, часто с примерами и пояснениями.

Комбинированно — сочетаются оба подхода, а также используются дополнительные методы (например, письменные карточки, рецензирование ответов товарищей)

Критерии оценивания.

полнота и правильность ответа; понимание и осознанность материала; логичность и последовательность изложения; корректность терминологии;

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
ПК-1.2	Использует знания о радиоактивности	устное
	и ядерной геофизике для разработки и	собеседование по
	исследования теоретических и	теоретическим
	экспериментальных моделей объектов	вопросам
	в своей профессиональной области	

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 5, Типовые оценочные средства для проведения экзамена по дисциплине

6.2.2.1.1 Описание процедуры

Экзамен сдается в период экзаменационной сессии, предусмотренной учебным планом и календарным учебным графиком.

Студенты допускаются к сдаче экзамена по дисциплине при выполнении всех запланированных форм текущего контроля согласно рабочей программе дисциплины, а также после выполнения и защиты всех лабораторных работ.

Примерные вопросы для подготовки к экзамену:

- 1. Что такое радиометрия и каковы её основные задачи в геологической разведке?
- 2. Опишите физические основы радиоактивного распада. Какие виды излучения при этом выделяются?
- 3. Какие изотопы являются основными индикаторами при радиометрических исследованиях горных пород?
- 4. Принцип работы сцинтилляционного детектора гамма-излучения.
- 5. В чём разница между сцинтилляционным и полупроводниковым детектором?
- 6. Какие параметры характеризуют радиометрический прибор и какова их роль?
- 7. Опишите основные этапы проведения радиометрической съемки в полевых условиях.
- 8. Какие методы коррекции фона применяются при измерении радиоактивности?
- 9. Как интерпретируются аномалии радиоактивности при геологоразведке?
- 10. Что такое гамма-спектрометрия и для чего она используется?
- 11. Как осуществляется калибровка радиометрического оборудования?
- 12. Основные методы обработки радиометрических данных: цифровая фильтрация, статистический анализ.
- 13. В чём состоит роль тория, урана и калия в радиометрических исследованиях?
- 14. Какие факторы влияют на точность радиометрических измерений?
- 15. Принципы работы и применение нейтронных генераторов в ядерной геофизике.
- 16. Опишите методики определения мощности и тонкости радиоактивных горизонтов.

- 17. Как радиометрические данные используются для оптимизации буровых работ?
- 18. Типы геологических объектов, наиболее изучаемые с помощью радиоактивных методов.
- 19. Какие существуют способы визуализации радиометрических данных?
- 20. Риски и меры безопасности при работе с радиоактивным оборудованием.
- 21. Что такое радиометрический фон и как его учитывать в исследованиях?
- 22. Объясните структуру и содержание гамма-спектра радиоактивного образца.
- 23. Как определяются концентрации радионуклидов на основе спектров?
- 24. Примеры применения радиометрии для прогнозирования геологических процессов.
- 25. Какие программные средства используются для анализа радиометрических данных?
- 26. Особенности работы и обработки данных при радиометрической съемке на больших площадях.
- 27. Методы оценки и устранения помех в радиометрических измерениях.
- 28. Влияние геометрии расположения прибора на результаты измерений.
- 29. Какие виды задач решаются радиометрией при контроле качества добычи полезных ископаемых?
- 30. Перспективы развития радиометрических и ядерно-геофизических методов в геологоразведке.

6.2.2.1.2 Критерии оценивания

Отлично	Хорошо	Удовлетворительн о	Неудовлетворительно
Ответ полный,	Ответ в целом	Ответ частичный,	Ответ не раскрывает
логичный и	полный, но есть	раскрывает	основные вопросы
структурированны	незначительные	основные	билета, содержит
й, раскрывает все	неточности или	положения, но есть	грубые ошибки или
теоретические	упущены	существенные	существенные
вопросы билета.	отдельные детали.	пробелы или	пробелы.
Приведены	Теоретические	ошибки в теории.	Теоретические
корректные	вопросы	Некоторые	положения изложены
определения,	раскрыты,	определения	неверно или
пояснения,	приведены	отсутствуют или	отсутствуют.
примеры и ссылки	основные	даны неверно,	Практическое задание
на нормативные	определения и	примеры не	не выполнено либо
документы (при	примеры.	приведены либо не	выполнено
необходимости).	Практическое	соответствуют	неправильно, расчеты
Практическое	задание	вопросу.	отсутствуют или
задание	выполнено	Практическое	неверны.
выполнено	правильно, но	задание выполнено	Материал не усвоен,
полностью,	возможны	частично, есть	самостоятельность
расчеты верны,	несущественные	ошибки в расчетах	отсутствует.
использованы	ошибки или	или не все этапы	
правильные	недостаточно	решения отражены.	
методы и	подробные	Понимание	
обоснования.	пояснения.	материала	
Ответ	Понимание	поверхностное,	
демонстрирует	материала	самостоятельность	
глубокое	хорошее, умение	ограничена.	
понимание	применять знания		
материала,	продемонстрирова		

самостоятельность	но.	
мышления и		
умение применять		
знания на		
практике.		

7 Основная учебная литература

- 1. Радиометрия и ядерная геофизика [Электронный ресурс] : программа, методические указания и контрольные вопросы для специальности 080400 "Геофизические методы поисков и разведки месторождений полезных ископаемых" / Иркут. гос. техн. ун-т, Каф. приклад. геофизики и геоинформатики, 2001. 25.
- 2. Ларионов Вячеслав Васильевич. Ядерная геофизика и радиометрическая разведка: учеб. для вузов по спец. "Геофиз. методы поисков и разведки месторождений полез. ископаемых" / Вячеслав Васильевич Ларионов, Рашит Ахмаевич Резванов, 1988. 324.
- 3. Булнаев А. И. Ядерная геофизика [Электронный ресурс] : учебное пособие / А. И. Булнаев, 2008. 84.

8 Дополнительная учебная литература и справочная

- 1. Радиометрия и ядерная геофизика : программа, метод. указания и контрол. вопросы для специальности 080400 "Геофиз. методы поисков и разведки месторождений полез. ископаемых" / Иркут. гос. техн. ун-т, 2004. 22.
- 2. Зернов Леонид Васильевич. Рудничная радиометрия / Леонид Васильевич Зернов, Вадим Семенович Леринман, Игорь Александрович Лучин, 1991. 165.
- 3. Ларионов В. В. Радиометрия скважин: учебное пособие для студентов вузов, обучающихся по специальности "Геофизические методы поисков и разведки месторождений полезных ископаемых" / В. В. Ларионов, 1969. 327.
- 4. Ядерная геофизика при исследовании нефтяных месторождений / [Ф. А. Алексеев и др.], 1978. 360.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/
- 11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем
- 1. Лицензионное программное обеспечение Системное программное обеспечение

- 2. Лицензионное программное обеспечение Пакет прикладных офисных программ
- 3. Лицензионное программное обеспечение Интернет-браузер

12 Материально-техническое обеспечение дисциплины

- 1. Учебная аудитория для проведения лекционных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оснащение: комплект учебной мебели, рабочее место преподавателя, доска. Мультимедийное оборудование (в том числе переносное): мультимедийный проектор, экран, акустическая система, компьютер с выходом в интернет.
- 2. Учебная аудитория для проведения лабораторных/практических (семинарских) занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оснащение: комплект учебной мебели, рабочее место преподавателя, доска. Мультимедийное оборудование (в том числе переносное): мультимедийный проектор, экран, акустическая система, компьютер с выходом в интернет.