Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Структурное подразделение «Автомобильного транспорта»

УТВЕРЖДЕНА:

на заседании кафедры Протокол №<u>9</u> от <u>22 апреля 2025</u> г.

Рабочая программа дисциплины

«ПРИКЛАДНЫЕ МЕТОДЫ ОБРАБОТКИ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ» Направление: 23.04.03 Эксплуатация транспортно-технологических машин и комплексов Техническая эксплуатация автомобилей Квалификация: Магистр Форма обучения: очная

Документ подписан простой электронной подписью Составитель программы: Кривцова Татьяна Игоревна Дата подписания: 30.05.2025

Документ подписан простой электронной подписью Утвердил: Федотов Александр Иванович

Дата подписания: 30.05.2025

Документ подписан простой электронной подписью Согласовал: Кривцов Сергей Николаевич Дата подписания: 02.06.2025

- 1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы
- 1.1 Дисциплина «Прикладные методы обработки экспериментальных данных» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ПК-2 Способность разрабатывать физические и	
математические (в том числе компьютерные) модели	
явлений и объектов применительно к колесным	ПК-2.1
транспортным средствам с применением	
современных технологий	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ПК-2.1	Способен моделировать процессы функционирования автомобилей и пользоваться прикладными методами при исследованиях в области автомобильного транспорта	Знать методы сбора, анализа и систематизации информации по теме исследования, методов анализа научных данных, принципов алгоритмичного программирования Уметь разрабатывать физические и математические (в том числе компьютерные) модели процессов функционирования автомобилей и их систем. Владеть навыками сбора, обработки анализа и обобщения научнотехнической информации, навыками по осуществлению деятельности, направленной на решение задач аналитического характера, предполагающих выбор и многообразие актуальных способов решения задач.

2 Место дисциплины в структуре ООП

Изучение дисциплины «Прикладные методы обработки экспериментальных данных» базируется на результатах освоения следующих дисциплин/практик: «Основы научных исследований»

Дисциплина является предшествующей для дисциплин/практик: «Компьютерные технологии в науке и производстве», «Прикладное программирование», «Экспериментальные методы научных исследований»

3 Объем дисциплины

Объем дисциплины составляет – 4 ЗЕТ

Вид учебной работы	Трудоемкость в академических часах			
	(Один академический час соответствует 45			

	минутам астрономическ	кого часа)
	Всего	Семестр № 2
Общая трудоемкость дисциплины	144	144
Аудиторные занятия, в том числе:	36	36
лекции	12	12
лабораторные работы	24	24
практические/семинарские занятия	0	0
Контактная работа, в том числе	0	0
в форме работы в электронной информационной образовательной среде	0	0
Самостоятельная работа (в т.ч. курсовое проектирование)	72	72
Трудоемкость промежуточной аттестации	36	36
Вид промежуточной аттестации (итогового контроля по дисциплине)	Экзамен	Экзамен

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр № 2

	Harrisanana		Видь	ы контан	ктной ра	боты		C	DC	Форма
No	№ Наименование	Лек	Лекции ЛР ПЗ(СЕМ)		CPC		Форма			
п/п	раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Статистические характеристики	1	4	1, 2, 3, 4, 5, 6	24			1, 2, 3, 4, 5, 6	72	Отчет
2	Критерии согласия	2	4							Отчет
3	Анализ экспериментальн ых данных	3	4							Отчет
	Промежуточная аттестация								36	Экзамен
	Всего		12		24				108	

4.2 Краткое содержание разделов и тем занятий

Семестр № $\underline{2}$

No	Тема	Краткое содержание
1	Статистические	Введение. Статистические характеристики; Законы
	характеристики	распределения случайных величин. Нормальный
		закон распределения (закон Гауса);
		Логарифмический - нормальный закон
		распределения. Закон распределения Вейбулла.
		Экспоненциальный закон распределения. Закон
		гамма-распределения.

2	Критерии согласия	Соответствия экспериментального и
		теоретического распределения.
3	Анализ	Корреляционный анализ экспериментальных
	экспериментальных	данных. Оценка статических параметров.
	данных	Доверительные интервалы. Понятие о случайной
		функции и ее характеристиках. Понятие о
		стационарном случайном процессе.

4.3 Перечень лабораторных работ

Семестр № 2

Nº	Наименование лабораторной работы	Кол-во академических часов
1	Выполнение проверки гипотезы о нормальном рас-пределении случайных величин результатов измерения тормозной силы диагностируемой оси автомобиля на силовом стенде с беговыми барабанами.	4
2	Построение графика плотности распределения нормального закона измерения силовых параметров диагностируемой оси автомобиля на силовом стенде с беговыми барабанами.	4
3	Оценка диагностирование противобуксовочных систем автотранспортных средств на стендах с беговыми барабанами.	4
4	Эксперимента по определению нормальных и касательных реакций в пятне контакта колеса с опорной поверхностью дороги.	4
5	Исследование нормальных и касательных реакций в пятне контакта колеса с опорной поверхностью дороги методом полных парных циклов.	4
6	Исследования процесса стендовых испытаний тормозных систем автомобилей с функционирующей ABS на полноопорном тормозном роликовом стенде способом корреляционного счета.	4

4.4 Перечень практических занятий

Практических занятий не предусмотрено

4.5 Самостоятельная работа

Семестр № 2

N₂	Вид СРС	Кол-во академических часов
1	Написание реферата	12
2	Оформление отчетов по лабораторным и практическим работам	12

3	Подготовка к практическим занятиям (лабораторным работам)	12
4	Подготовка к сдаче и защите отчетов	12
5	Подготовка презентаций	12
6	Создание математических и графических моделей процессов	12

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: Деловая игра

- 5 Перечень учебно-методического обеспечения дисциплины
- 5.1 Методические указания для обучающихся по освоению дисциплины
- 5.1.1 Методические указания для обучающихся по лабораторным работам:

https://el.istu.edu/course/view.php?id=8567

5.1.2 Методические указания для обучающихся по самостоятельной работе:

https://el.istu.edu/course/view.php?id=8567

- 6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине
- 6.1 Оценочные средства для проведения текущего контроля

6.1.1 семестр 2 | Отчет

Описание процедуры.

Отчет, описывающий процедуру, представляет собой документ, в котором систематично и последовательно излагается порядок выполнения определенной деятельности или процесса. Он может использоваться для обучения, документирования, или как руководство к действию.

Критерии оценивания.

Общие критерии оценки отчета:

Ясность и точность:

Отчет должен быть написан понятным и простым языком, избегая двусмысленности и технических терминов без объяснений.

Полнота:

Отчет должен содержать всю необходимую информацию и не пропускать важные детали. Своевременность:

Отчет должен быть представлен в установленный срок.

Структурированность:

Отчет должен быть хорошо организован, с логической последовательностью разделов и подразделов.

Грамотность и корректность:

Отчет должен быть проверен на орфографические, пунктуационные и стилистические ошибки.

Доказательная база:

Отчет должен содержать ссылки на источники и аргументы, подтверждающие выводы и предложения.

Аналитика:

Отчет должен содержать анализ данных и информации, выводы и предложения.

Творческий подход:

Отчет может быть оценен за оригинальность мышления и нестандартные решения.

Уровень владения материалом:

Оценивается умение объяснять материал, отвечать на вопросы и демонстрировать знания.

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

физические и математические (в том числе компьютерные) модели процессов функционирования вопросы билета, автомобилей и их систем. Владеет навыками сбора, обработки анализа и обобщения научно-технической информации, навыками по осуществлению деятельности, направленной на решение задач «Прикладные аналитического характера, предполагающих выбор и экспериментальн многообразие актуальных способов ых данных»)	Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
	ПК-2.1	данных, методы проведения экспериментов и наблюдений, обобщения. Умеет разрабатывать физические и математические (в том числе компьютерные) модели процессов функционирования автомобилей и их систем. Владеет навыками сбора, обработки анализа и обобщения научно-технической информации, навыками по осуществлению деятельности, направленной на решение задач аналитического характера, предполагающих выбор и	промежуточной аттестации — экзамен. Методы оценивания — ответы на вопросы билета, защита отчета. Средства оценивания — (ФОС по дисциплинам «Прикладные методы обработки экспериментальных данных») вопросы по темам/раздела м дисциплин,

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 2, Типовые оценочные средства для проведения экзамена по дисциплине

6.2.2.1.1 Описание процедуры

Экзамены проводятся в устной и письменной форме по билетам, составленных из вопросов тем.

Пример задания:

- 1. Как определяется математическое ожидание?
- 2. Какие характеристики называются статистическими?

- 3. Как определяется нормальный закон распределения?
- 4. Как определяется плотность логарифмически-нормального распределения?
- 5.В чем суть закона распределения, предложенного Вейбуллом?
- 6.Как определяется корреляционная функция?
- 7.В чем заключается суть закона гамма-распределения?
- 8. Как определяется дисперсия?
- 9.В чем заключается суть способа разностного сглаживания?
- 10. Достоинство способа сглаживания табличных данных и графиков по способу наименьших квадратов.
- 11. На какой вопрос отвечает коэффициент корреляции?
- 12. Как определяется коэффициент ковариации?
- 13. Как определяются средние межклассовые значения аргумента?
- 14. Недостаток способа сглаживания табличных данных и графиков по способу наименьших квадратов.
- 15. Как определяется размах показаний?
- 16. Как определяется среднее арифметическое значение?
- 17. Почему если при многократном повторении последний эксперимент дал тот же результат (или худший), что и предыдущий, это, скорее всего означает, что шаг (интервал) между опытами (экспериментами) слишком велик и надо поставить промежуточный эксперимент?
- 18. Почему по нескольким первоначальным опытам необходимо знать уравнении регрессии?
- 19. В чем заключается суть метода пересечения заданных уровней?
- 20. В чем заключается суть метода максимумов?
- 21. Как определяется среднее квадратичное отклонение?
- 22. В чем заключается суть метода случайных ординат;
- 23. Каким способом осуществляется систематизация процессов по методу максимумов?
- 24. В чем заключается суть метода полных парных циклов

_

6.2.2.1.2 Критерии оценивания

Отлично	Хорошо	Удовлетворительн о	Неудовлетворительно
Оценка «отлично»	Оценка «хорошо»	Оценка	Оценка
выставляется, если	выставляется при	«удовлетворительно	«неудовлетворительно
студент дает	условии	» выставляется в том	» выставляется в
полные ответы на	соблюдения	случае, когда	случае, когда студент
вопросы из	следующих	студент в целом	не смог осветить
билета, а также	требований:	овладел сути	вопрос либо вопросы
дополнительные	вопросы	вопросов по данной	освещены
вопросы	освещены полно,	теме, обнаруживает	неправильно,
преподавателя и	изложения	знание лекционного	бессистемно, с
показывает при	материала	материала, учебной	грубыми ошибками,
этом глубокое	логическое,	литературы,	отсутствуют
овладение	обоснованное	пытается	понимания основной
лекционным	фактами,	анализировать	сути вопросов,
материалом,	освещение	факты и события,	выводы, обобщения,
способен выразить	вопросов	делать выводы и	обнаружено неумение
собственное	завершено	решать задачи. Но	решать учебные
отношение по	выводами. Но в	дает неполные	задачи.
данной проблеме,	ответах допущены	ответы на вопросы,	

проявляет умение	неточности,	допускает грубые	
самостоятельно и	некоторые	ошибки при	
аргументированно	незначительные	освещении	
излагать материал,	ошибки, имеет	теоретического	
анализировать	место	материала или 3-4	
явления и факты,	недостаточная	логических ошибок	
делать	аргументированно	при решении задач	
самостоятельные	сть при изложении		
обобщения и	материала, четко		
выводы,	выраженное		
правильно	отношение		
выполняет	студента к фактам		
учебные задачи,	и событиям или		
допуская не более	допущены 1-2		
1-2	арифметические и		
арифметических	1- 2 логические		
ошибок или	ошибки при		
описок	решении задач		

7 Основная учебная литература

- 1. Авдонин А. С. Прикладные методы расчета оболочек и тонкостенных конструкций / А. С. Авдонин, 1969. 402.
- 2. Старжинский В. М. Прикладные методы нелинейных колебаний / В. М. Старжинский, 1977. 255.

8 Дополнительная учебная литература и справочная

- 1. Прикладные методы и программирование в численном анализе : сб. тр. Науч.-исслед. ВЦ МГУ / Моск. гос. ун-т им. М. В. Ломоносова, 1985. 185.
- 2. Прикладные методы исследования физико-механических процессов : сб. науч. тр. / Ин-т математики АН УССР, 1979. 171.

9 Ресурсы сети Интернет

10 Профессиональные базы данных

- 11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем
- 12 Материально-техническое обеспечение дисциплины