Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Структурное подразделение «Автоматизации и управления»

УТВЕРЖДЕНА:

на заседании кафедры Протокол №<u>11</u> от <u>11 февраля 2025</u> г.

Рабочая программа дисциплины

«МАТЕМАТИЧЕСКИЕ МЕТОДЫ В ТЕОРИИ УПРАВЛЕНИЯ»			
Направление: 27.04.02 Управление качеством			
Управление качеством. Интегрированные системы менеджмента и инжиниринг			
Квалификация: Магистр			
Форма обучения: очная			

Документ подписан простой электронной подписью Составитель программы: Бовкун Александр Сергеевич Дата подписания: 18.06.2025

Документ подписан простой электронной подписью Утвердил: Елшин Виктор Владимирович

Дата подписания: 20.06.2025

Документ подписан простой электронной подписью Согласовал: Лонцих Павел Абрамович

Дата подписания: 20.06.2025

- 1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы
- 1.1 Дисциплина «Математические методы в теории управления» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ПК-2 Способен осуществлять реинжиниринг бизнес-	
процессов организации с использованием	ПК-2.4
современных технологий	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ПК-2.4	Демонстрирует способность применять математические методы в теории управления для анализа и реинжиниринга бизнес-процессов организации.	Знать Знать способы применения математических методов в теории управления для анализа бизнеспроцессов организации Уметь Уметь применять математические методы в теории управления Владеть Владеть навыками применения математических методов в теории управления

2 Место дисциплины в структуре ООП

Изучение дисциплины «Математические методы в теории управления» базируется на результатах освоения следующих дисциплин/практик: «Методы и модели принятия решений»

Дисциплина является предшествующей для дисциплин/практик: «Информационные технологии принятия проектных решений», «Компьютерные технологии в управлении качеством»

3 Объем дисциплины

Объем дисциплины составляет – 3 ЗЕТ

Вид учебной работы	Трудоемкость в академических часах (Один академический час соответствует 45 минутам астрономического часа)		
06	Bcero	Семестр № 3	
Общая трудоемкость дисциплины	108	108	
Аудиторные занятия, в том числе:	39	39	
лекции	13	13	
лабораторные работы	0	0	
практические/семинарские занятия	26	26	
Самостоятельная работа (в т.ч. курсовое проектирование)	69	69	
Трудоемкость промежуточной аттестации	0	0	

Вид промежуточной аттестации		
(итогового контроля по дисциплине)	Зачет	Зачет

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр № 3

	Наименование		Виды контактной работы				CPC		Форма	
l No l		Лекции		ЛР		ПЗ(СЕМ)		CPC		Форма
п/п	п/п раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Введение в дисциплину	1	3			1	5	2	23	Устный опрос
2	Дифференцирова ниев функциональных пространствах	2	3			2	5			Устный опрос
3	Основытеории экстремальных задач	3	3			3	5			Устный опрос
4	Основы теории классического вариационного исчисления	4	4			4, 5	11	1	46	Устный опрос
	Промежуточная аттестация									Зачет
	Всего		13				26		69	

4.2 Краткое содержание разделов и тем занятий

Семестр № 3

No	Тема	Краткое содержание	
1	Введение в дисциплину	Изучение математических основ теории	
		оптимизации для отображений, заданных на	
		пространствах болеесложной природы, чем	
		конечномерные пространства	
2	Дифференцированиев	Определение сильной производной. Сильные	
	функциональных	производные отображений в конечномерных	
	пространствах	пространствах. Свойства сильной производной.	
		Теоремаопроизводнойсложной	
		функции.Определение слабой производной. Связь	
		свойств сильной дифференцируемости, слабой	
		дифференцируемостиинепрерывных отображений.	
		Теорема о достаточных условиях	
		сильнойдифференцируемости.Дополнительныерез	
		ультаты из функционального анализа	
		(формулировки утверждений).	
3	Основытеории	Общая постановка экстремальной задачи с	
	экстремальных задач	ограничениями. Описание задачи. Понятие	
		локального и глобального экстремумов.Гладкая	

		задача без ограничений. Теорема о необходимых
		условиях экстремума (принцип Ферма).
		Доказательство теоремы. Следствия из основной
		теоремы: необходимые условия экстремума для
		вариантов слабой и сильной дифференцируемости.
		Гладкая задача с ограничениями в виде равенств.
		Теорема о необходимых условияхэкстремума для
		гладкой задачи с равенствами в банаховых
		пространствах. Формулировкаи доказательство
		теоремы. Структура необходимых условий;
		условия стационарности иусловия регулярности.
		Замечания к теореме, анализ условий и
		утверждений. Гладкая задача с конечным числом
		ограничений вида равенств. Доказательство на
		основеутверждения общей теоремы для банаховых
		пространств. Преобразование
		условийстационарности и условий
		регулярности. Необходимые условия экстремума в
		гладкой конечномерной задаче с
		равенствами(классическийвариант).
		Алгоритмический смысл необходимых условий.
		Условия регулярности в конечномерной
		задаче.Гладкая задача с равенствами и
		неравенствами. Формулировка теоремы о
		необходимых условиях экстремума. Анализ
		необходимых условий стационарности и
		дополняющей нежесткости. Выпуклая задача
		снеравенствами и нефункциональным
		ограничением (задача выпуклого
		программирования). Теорема Куна-Таккера.
		Особенности необходимых условийэкстремума
		для выпуклых задач.
4	Основы теории	Классическая задача Больца без ограничений.
-	классического	Простейшая векторная задача КВИ (задача с
		закрепленными концами траектории). Постановка
	вариационного	1 1 1 1
	исчисления	задачи. Теорема о необходимых условиях
		экстремума (формулировка). Анализ необходимых
		условий.Задача КВИ с граничными условиями
		общего вида. Постановка задачи. Теорема о
		необходимых условиях экстремума.Общая
		закономерность, связанная с разрешимостью
		экстремальных задач КВИ и ОУ. Необходимое
		условие Вейерштрасса в простейшей задаче КВИ.
		Общее определение функции Вейерштрасса для
		произвольной непрерывно дифференцируемой
		функции. Геометрическийсмысл функции
		Вейерштрасса.Теорема, в которой
		устанавливается, что условие Вейерштрасса
		является необходимым условием сильного
		минимума в простейшей задаче КВИ.
		Необходимые условия второго порядка и
1		ттеоблодимые условия второго порядка и

достаточные условия в простейшей векторной
задаче КВИ. Условие Лежандра в скалярном и
векторном вариантах. Усиленные условия
Лежандра. Уравнение Якоби в общей форме.
Усиленное условие Якоби.Основные результаты и
их анализ. Теорема о необходимых условиях
слабого минимума и достаточных условиях
сильного минимума в простейшей векторной
задаче. Теорема о достаточных условиях слабого
минимума в простейшей векторной задаче.

4.3 Перечень лабораторных работ

Лабораторных работ не предусмотрено

4.4 Перечень практических занятий

Семестр № 3

No	Темы практических (семинарских) занятий	Кол-во академических часов
1	Изучение математических основ теории оптимизации для отображений, заданных на пространствах более сложной природы, чем конечномерные пространства	5
2	Определение сильной производной	5
3	Определение слабой производной	5
4	Теорема о достаточных условиях сильной дифференцируемости.	5
5	Теорема о необходимых условиях экстремума (принцип Ферма). Доказательство теоремы.	6

4.5 Самостоятельная работа

Семестр № 3

N₂	Вид СРС	Кол-во академических часов
1	Подготовка к зачёту	46
2	Подготовка к практическим занятиям (лабораторным работам)	23

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: дискуссия

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по практическим занятиям

Цель подготовки к практическим (семинарским) занятиям предполагает усвоение теоретического материала к следующему практическому занятию, а также закрепление

знаний, полученных на предыдущем практическом занятии.

Чтобы подготовиться к предстоящему практическому занятию, студент должен изучить конспект лекций, дополнить его материалом из соответствующего учебного пособия, ответить на вопросы для самоподготовки и контрольные вопросы по теме занятия. Для закрепления материала по предыдущему практическому занятию студенту необходимо решить заданные на дом задачи.

5.1.2 Методические указания для обучающихся по самостоятельной работе:

Цель самостоятельного изучения теоретического материала — усвоить теоретический материал по некоторым вопросам отдельных тем, который преподаватель не раскрывает на лекции.

Для самостоятельного изучения теоретического материала необходимо ознакомиться с содержанием методических указаний по самостоятельной работе студентов. При этом целесообразно по всем изучаемым темам в разрезе предложенных вопросов для самостоятельной работы составить краткий конспект, который даст возможность более полного усвоения теоретических положений и систематизировать учебный материал, соответствующий программе курса.

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 семестр 3 | Устный опрос

Описание процедуры.

Темы, по которым предусмотрен текущий контроль, не являются ключевыми в изучаемой дисциплине. Никаких оценок и баллов по результатам опроса не предусмотрено. Описание процедуры: Обучающемуся задаются вопросы по ранее пройденному на лекциях материалу и по самостоятельно им изученному. На занятиях используются: индивидуальный опрос (ответы у доски на вопросы по содержанию изученного материала), фронтальный опрос (расчленение изученного материала на сравнительно мелкие вопросы, чтобы проверить знания большего количества обучающихся). Фронтальный опрос проводится в форме устного опроса понятий, определений, подходов.

Вопросы для контроля:

- 1. Линейные пространства и линейные операторы.
- 2. Определение линейного топологического пространства. 3. Свойство локальной выпуклости.
- 4. Определения нормы и нормированного пространства. 5. Сходимость по норме.
- 6. Свойство полноты. Банаховы пространства. 7. Примеры банаховых пространств.
- 8. Пространства непрерывных вектор-функций и непрерывно дифференцируемых вектор-функций.

Критерии оценивания.

Способен применять математические методы в теории управления в процессе анализа и реинжиниринга бизнес-процессов организации

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
ПК-2.4	Способен применять математические	Устный опрос или
	методы в теории управления в	тестирование
	процессе анализа и реинжиниринга	
	бизнес-процессов организации	

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 3, Типовые оценочные средства для проведения зачета по дисциплине

6.2.2.1.1 Описание процедуры

Зачет проводится в устной форме. Преподаватель задает студенту два-три теоретических вопроса, в зависимости от результатов посещения занятий студентом и результатов текущего контроля. На подготовку отводится 20 минут. После этого студент отвечает на вопросы билета. Для объективного оценивания знаний студента могут быть заданы дополнительные вопросы по темам курса.

Пример задания:

Типовые оценочные средства для проведения зачета по дисциплине Примерная тематика вопросов для зачёта:

- 1. Понятие модели, формализация экономической теории. Теорема Гёделя о неполноте
- 2. Математическая модель, экономико-математические методы
- 3. Использование дифференциального исчисления в экономическом анализе
- 4. Определение эластичности: свойства, виды эластичности
- 5. Связь эластичности с выручкой продавца
- 6. Связь цены и предельных издержек монополиста
- 7. Эластичность и налоговая плотика
- 8. Общие задачи оптимизации
- 9. Задача коммивояжера
- 10. Модель Леонтьева многоотраслевой экономики
- 11. Модель международной торговли
- 12. Соотношение неопределенностей Гейзенберга. Случайность, вероятность

6.2.2.1.2 Критерии оценивания

Зачтено	Не зачтено
Хорошее знание основных терминов и	плохое знание основных терминов и
понятий курса; Хорошее знание и	понятий курса; плохое знание и владение
владение методами и средствами решения	методами и средствами решения

поставленных задач; Последовательное изложение материала курса; Умение формулировать некоторые обобщения по теме вопросов; Достаточно полные ответы на вопросы при сдаче зачета.

поставленных задач; Плохое изложение материала курса; Не умение формулировать некоторые обобщения по теме вопросов; Недостаточно полные ответы на вопросы при сдаче зачета;

7 Основная учебная литература

1. Глимм Дж. Математические методы квантовой физики : Подход с использованием функциональных интегралов : переводное издание / Дж. Глимм, А. Джаффе, 1984. - 445.

8 Дополнительная учебная литература и справочная

- 1. Пытьев Юрий Петрович. Математические методы интерпретации эксперимента: учеб. пособие для вузов / Юрий Петрович Пытьев, 1989. 351.
- 2. Математические методы и модели в планировании и управлении горным производством: учеб. пособие для вузов по спец. "Экономика и орг. горн. пром-сти" / С.А. Кулиш, Е.И. Азбель, Анатолий Григорьевич Протосеня, 1985. 288.
- 3. Шикин Е. В. Математические методы и модели в управлении : учеб. пособие для упр. специальностей вузов / Е. В. Шикин; Моск. гос. ун-т им. М. В. Ломоносова, Ин-т гос. упр. и социал. исслед., 2000. 437.
- 4. Ильина М. С. Математические методы моделирования в социологических процессах : пособие для специальности "Социология" / М. С. Ильина, Е. Ю. Солопанов, Е. А. Фунтикова, 2007. 92.
- 5. Кутейников А. Н. Математические методы в психологии : учебное пособие / А. Н. Кутейников, 2008. 170.
- 6. Бережная Е. В. Математические методы моделирования экономических систем: учеб. пособие для вузов / Е. В. Бережная, В. И. Бережной, 2008. 430.
- 7. Наследов А. Д. Математические методы психологического исследования. Анализ и интерпретация данных : учеб. пособие для вузов по направлению и по специальностям психологии / А. Д. Наследов, 2007. 389.
- 8. Эглит В. А. Математические методы оптимального планирования надежности технологических систем: учеб. пособие / В. А. Эглит, 1973. 172.
- 9. Сборник трудов. Серия "Математические методы в геологии и горном деле" / Всесоюз. заоч. политехн. ин-т. Вып. 121, 1979. 78.
- 10. Борисов А. В. Математические методы динамики вихревых структур / А. В. Борисов, 2005. 368.
- 11. Долматов А. С. Математические методы риск-менеджмента : учеб. пособие по специальности "Финансы и кредит" / А. С. Долматов, 2007. 319.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/

11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем

- 1. Microsoft Office 2003 VLK (поставки 2007 и 2008)
- 2. Microsoft Office 2007 VLK (поставки 2007 и 2008)
- 3. Microsoft Office 2003 rus для BPTNK
- 4. Microsoft Office 2003 Suite SB Edition_для BPTNK

12 Материально-техническое обеспечение дисциплины

- 1. Проектор Acer x1211K DLP 2500L
- 2. Проектор BenQ M*520
- 3. Проектор мультимедиа BenQ MW621ST(с экраном 3*3 м)
- 4. Проектор Beng MS630ST DLP 3200Lm(800x600) 13000:1ресурс