Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Структурное подразделение «Химической технологии им. Н.И. Ярополова»

УТВЕРЖДЕНА:

на заседании кафедры Протокол $N\!\!\!\!\!\!\!_{2} \,$ от $\underline{14}$ мая $\underline{2025}$ г.

Рабочая программа дисциплины

«ЭНЕРГОТЕХНОЛОГИЯ ХИМИЧЕСКИХ ПРОИЗВОДСТВ»
II 10 02 01 V
Направление: 18.03.01 Химическая технология
Химическая технология органических веществ
Квалификация: Бакалавр
Форма обучения: очная
Форма обучения. очная

Документ подписан простой электронной подписью Составитель программы: Чайка Анна Анатольевна Дата подписания: 25.06.2025

Документ подписан простой электронной подписью Утвердил: Боженков Георгий Викторович

Дата подписания: 27.06.2025

Документ подписан простой электронной подписью Согласовал: Дьячкова Светлана Георгиевна Дата подписания: 30.06.2025

- 1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы
- 1.1 Дисциплина «Энерготехнология химических производств» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ПКС-3 Способен анализировать техническую	
документацию, подбирать оборудование, готовить	
заявки на приобретение и ремонт оборудования	ПКС-3.1
предприятий органического и нефтехимического	
синтеза	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ПКС-3.1	Демонстрирует знания принципиальных схем работы тепловых и газовых турбин, холодильных установок, тепловых технологических аппаратов, приспособлений для получения пара и других теплоносителей и применяет их для расчета эффективности работы газовых и паровых турбин, компрессоров, холодильных установок; выполняет расчет горения топлива	Знать принципиальные схемы работы тепловых и газовых турбин, тепловых двигателей, холодильных установок, тепловых технологических аппаратов, приспособлений для получения пара и других теплоносителей; термодинамические процессы, проходящие в основных теплотехнологических и теплоэнергетических установках Уметь рассчитать эффективность работы газовых и паровых турбин, компрессора, теплового двигателя, холодильной установки; сделать расчет горения топлива Владеть методами анализа эффективности работы химических производств

2 Место дисциплины в структуре ООП

Изучение дисциплины «Энерготехнология химических производств» базируется на результатах освоения следующих дисциплин/практик: «Физика»

Дисциплина является предшествующей для дисциплин/практик: «Основы проектной деятельности», «Процессы и аппараты химической технологии», «Подготовка, транспортировка и хранение нефти и газа», «Технология переработки углеводородных газов», «Моделирование химико-технологических процессов», «Производственная практика: технологическая (проектно-технологическая) практика», «Химическая технология топлив и углеродных материалов», «Химия и технология органических веществ», «Проектирование и оборудование предприятий органического синтеза», «Производственная практика: преддипломная практика»

3 Объем дисциплины

Объем дисциплины составляет – 3 ЗЕТ

Вид учебной работы	Трудоемкость в академических часах (Один академический час соответствует 45 минутам астрономического часа)		
	Bcero	Семестр № 3	
Общая трудоемкость дисциплины	108	108	
Аудиторные занятия, в том числе:	48	48	
лекции	32	32	
лабораторные работы	0	0	
практические/семинарские занятия	16	16	
Самостоятельная работа (в т.ч. курсовое проектирование)	60	60	
Трудоемкость промежуточной аттестации	0	0	
Вид промежуточной аттестации (итогового контроля по дисциплине)	Зачет	Зачет	

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр № 3

				Виды контактной работы				CPC		
No	№ Наименование		Лекции		ЛР		ПЗ(СЕМ)		PC	Форма
п/п	раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	No	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Введение	1	2							Тест
2	Основы технической термодинамики	2	8			1, 2	4	1, 2, 3	14	Отчет
3	Процессы сжатия газов и паров	3	4			3	2	1, 2, 3	14	Отчет
4	Циклические процессы	4	8			4	2	1, 2, 3	16	Отчет
5	Энерготехнология химико- технологических систем (ХТС)	5	10			5, 6, 7, 8	8	1, 2, 3	16	Отчет
	Промежуточная аттестация									Зачет
	Всего		32				16		60	

4.2 Краткое содержание разделов и тем занятий

Семестр № $\underline{3}$

No	Тема	Краткое содержание
1	Введение	Предмет технической термодинамики, место
		дисциплины в общей системе наук и в системе
		подготовки инженеров. Основные понятия и
		определения
2	Основы технической	Первый закон термодинамики. Второй закон

	термодинамики	термодинамики. Термодинамические процессы.
		Термодинамика потока. Истечение и
		дросселирование газов и паров.
3	Процессы сжатия газов	Термодинамический анализ процессов в
	и паров	компрессорах. Поршневые компрессоры,
		вентиляторы и турбокомпрессоры
4	Циклические процессы	Циклы газотурбинных установок (ГТУ) и
		двигателей внутреннего сгорания. Циклы
		холодильных машин
5	Энерготехнология	Общие сведения об энерготехнологии. Источники
	химико-	генерирования теплоты. Вторичные энергоресурсы
	технологических	(ВЭР) химических производств.
	систем (ХТС)	

4.3 Перечень лабораторных работ

Лабораторных работ не предусмотрено

4.4 Перечень практических занятий

Семестр № <u>3</u>

Nº	Темы практических (семинарских) занятий	Кол-во академических часов
	Уравнение связи основных параметров	
1	состояния термодинамической системы.	2
1	Основные параметры смеси идеальных газов	2
	(массовая и объемная доля, теплоемкость).	
	Теплота и работа как формы передачи энергии в	
2	изохорном, изобарном, изотермическом,	2
	адиабатном процессе.	
3	Расчёт мощности поршневых компрессоров	2
4	Эксергетический анализ работы компрессоров, турбин и процесса дросселирования	2
5	Определение максимального и оптимального КПД цикла газотурбинной установки энтропийным методом	2
6	Эксергетический анализ циклов газотурбинных установок	2
7	Расчет горения топлива	2
8	Расчет химической эксергии газообразного	2
0	топлива и топочных газов	2

4.5 Самостоятельная работа

Семестр № 3

Nº	Вид СРС	Кол-во академических часов
1	Подготовка к сдаче и защите отчетов	8
2	Проработка разделов теоретического материала	20
3	Расчетно-графические и аналогичные работы	32

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: Бассейн (swimming pool) — метод, при котором обучающиеся проходят несколько интенсивных буткемпов с целью получения новых знаний для выполнения практических заданий. Дискуссия (discussion) — разностороннее групповое обсуждение спорного вопроса, нацеленное на получение решения, устраивающего всех участников группы. Интерактивная (проблемная) лекция (interactive lecture) — выступление преподавателя перед большой аудиторией, включающее дискуссии, использование презентаций или видеоматериалов, мозговой штурм, мотивационную речь. Мастер-класс (master class) — способ передачи новых идей и концепций. На мастерклассе должны быть продемонстрированы оригинальные теории, методики, технологии. Он может включать также практические задания для закрепления полученных знаний и навыков. Просмотр и обсуждение учебных видеофильмов (film-based learning) — осуществляется для размышления над проблемными вопросами, которые озвучиваются перед началом фильма. Публичная презентация (public presentation) — представление обучающих материалов в структурированном, графическом и простом для усвоения виде. Презентация может служить дополнительной иллюстрацией учебного материала и отображать его ключевые моменты. Работа в малых группах (small group workshop) деление коллектива на малые группы для обсуждения определенных вопросов и разработки решений учебной проблемы. Этот метод позволяет вовлекать в работу всех учащихся, тренирует навыки сотрудничества и межличностного общения. «Дерево решений» (decision tree) — выбор оптимального решения проблемы путем построения «дерева решений» и оценки преимуществ и недостатков возможных вариантов. Преподаватель, применяющий интерактивные методы, выступает в качестве помощника и координатора процесса, передавая активную функцию обучения студентам. Он же регулирует процесс через подготовку специальных заданий, проведение консультаций, обеспечение технологической базы, оценку работ и предоставление обратной связи. Слушатели в процессе интерактивного обучения общаются и самостоятельно решают проблемы, обмениваются информацией, дают оценку результатам своей работы и работы других учащихся.

- 5 Перечень учебно-методического обеспечения дисциплины
- 5.1 Методические указания для обучающихся по освоению дисциплины
- 5.1.1 Методические указания для обучающихся по практическим занятиям

Чайка, А. А. Энерготехнология химических производств [Электронный ресурс]. - Иркутск : ИРНИТУ, 2018. - Режим доступа: https://el.istu.edu/course/view.php?id=238 (дата обращения: 28.10.2024).

5.1.2 Методические указания для обучающихся по самостоятельной работе:

Чайка, А. А. Энерготехнология химических производств [Электронный ресурс]. - Иркутск : ИРНИТУ, 2018. - Режим доступа: https://el.istu.edu/course/view.php?id=238 (дата обращения: 28.10.2024).

- 6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине
- 6.1 Оценочные средства для проведения текущего контроля
- 6.1.1 семестр 3 | Отчет

Описание процедуры.

Текущий контроль для оперативного и регулярного управления учебной деятельностью осуществляется при защите отчетов по практической и самостоятельной работе студента. Требования к отчетным материалам по практической и самостоятельной работе студента. Отчетные материалы оформляются на отдельных листах и должны включать:

- 1. Титульный лист (указать наименование дисциплины, наименование и номер практической работы, фамилию и инициалы студента, вариант работы (две последние цифры номера зачётной книжки), фамилию и инициалы преподавателя).
- 2. Условие задачи и исходные данные;
- 3. Решение задачи: необходимо сопровождать кратким пояснительным текстом с обоснованием выбора расчетных уравнений, для используемых формул дать расшифровку буквенных обозначений в той последовательности, как они приведены в уравнении вычисления производить в единицах СИ, после числового значения результата расчета обязательно проставлять обозначение единицы величины, при записи результатов расчета использовать правила округления чисел.

Защита отчета по практической и/или самостоятельной работе Проводится в форме устного вопроса с использованием вопросов для текущего контроля.

Критерии оценивания.

«отлично» за защиту отчета ставится студенту, обнаружившему всестороннее, систематическое и достаточно глубокое знание материала, умение свободно выполнять задания, предусмотренные программой, а также оформившему отчет в соответствии с требованиями.

«хорошо» за защиту отчета ставится студенту, обнаружившему достаточно полное знание материала, успешно выполняющему предусмотренные программой задания, а также оформившему отчет в соответствии с требованиями.

«удовлетворительно» за защиту отчета ставится студенту, обнаружившему знание основного материала, в целом справляющемуся с выполнением заданий, предусмотренных программой, а также оформившему отчет в соответствии с требованиями.

«неудовлетворительно» ставится студенту, обнаружившему существенные пробелы в знании основного материала и/или допустившему принципиальные ошибки в выполнении предусмотренных программой заданий и/или оформление отчета не соответствует требованиям.

6.1.2 семестр 3 | Тест

Описание процедуры.

По окончании вводной лекции демонстрируются слайды с вопросами. Каждый вопрос демонстрируется в течение 1-2 минут. За это время обучающийся должен проставить номер вопроса и вариант ответа на листе бумаги, где также указывает свою фамилию и группу.

Критерии оценивания.

Верный ответ на каждый вопрос оценивается в 1 балл. Неверный ответ -0 баллов. Всего можно получить -10 баллов.

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
ПКС-3.1	Исчерпывающе, последовательно, четко и логически стройно излагает теоретический материал, использует в ответе материал научной литературы, свободно справляется с задачами, не затрудняется с ответом при видоизменении заданий, правильно обосновывает принятое решение, демонстрирует разносторонние навыки и приемы выполнения практических задач	Зачет

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 3, Типовые оценочные средства для проведения зачета по дисциплине

6.2.2.1.1 Описание процедуры

Итоговая оценка по дисциплине формируется с использованием балльно-рейтинговой системы. Рейтинг по дисциплине определяется как средневзвешенный по суммарному текущему и зачетному рейтингам при коэффициенте весомости текущей аттестации в семестре 0,6 и зачета 0,4. Максимальная оценка при выполнении задания на зачете — 15 баллов. Максимальный суммарный текущий рейтинг — 100 баллов. Максимальная средневзвешенная оценка — 49 баллов.

Пример задания:

Билет для проведения промежуточной аттестации по дисциплине «Энерготехнология химических производств»

- 1. Опишите принципы работы газотурбинной установки (ГТУ) со сжиганием топлива при постоянном давлении с помощью принципиальной схемы и диаграмм в координатах P-V и T-S.
- (5 баллов)
- 2. Решите задачу, используя уравнения термического к.п.д., внутреннего относительного к.п.д. и эффективного к.п.д. газотурбинных установок. (5 баллов)

Определить термический и внутренний абсолютный КПД простого разомкнутого цикла ГТУ с подводом теплоты при p=const, для которого заданы: давление и температура воздуха перед компрессором p1=1 бар, t1=20 оС, температура газов на выходе из камеры сгорания t3=1000 оС, степень повышения давления воздуха в компрессоре =9, коэффициент адиабатного сжатия в компрессоре к=0,85 и внутренний относительный КПД газовой турбины гт=0,9. Рабочее тело обладает свойствами идеального воздуха с постоянными изобарными и изохорными теплоемкостями.

3. Сравните циклы ГТУ при различных степенях повышения давлений и одинаковых максимальных температурах. Какой из них имеет наибольший к.п.д. ?. Предложите и обоснуйте методы повышения термического к.п.д. идеального цикла газотурбинной установки.

(5 баллов)

6.2.2.1.2 Критерии оценивания

Зачтено	Не зачтено
Рейтинг по дисциплине более 30 баллов	Рейтинг по дисциплине менее 30 баллов

7 Основная учебная литература

- 1. Чухин, И. М. Сборник задач по технической термодинамике: учебное пособие / И. М. Чухин. 2-е перераб. и доп. Иваново: ИГЭУ, 2018. 248 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/154598 (дата обращения: 25.06.2025). Режим доступа: для авториз. пользователей.
- 2. Захарьева Н. Г. Техническая термодинамика и теплопередача : учебное пособие / Н. Г. Захарьева, В. А. Начигин, 2013. 171.

8 Дополнительная учебная литература и справочная

- 1. Теплотехника : учеб. для техн. специальностей вузов / [В. Н. Луканин, М. Г. Шатров, Г. М. Камфер и др.], 2002. 671.
- 2. Теплотехника : учеб. для мех. специальностей вузов / Баскаков А. П. [и др.]; под ред. А. П. Баскакова, 1982. 264.
- 3. Чечеткин Александр Васильевич. Теплотехника: учеб. для хим.-технол. спец. вузов / Александр Васильевич Чечеткин, Нина Аркадьевна Занемонец, 1986. 343.
- 4. Теоретические основы теплотехники. Промышленная теплотехника. Т. 1. Повышение эффективности использования газообразного и жидкого топлива / Э.И. Розенфельд, 1986. 126.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/
- 11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем

- 1. Лицензионное программное обеспечение Системное программное обеспечение
- 2. Лицензионное программное обеспечение Пакет прикладных офисных программ
- 3. Лицензионное программное обеспечение Интернет-браузер

12 Материально-техническое обеспечение дисциплины

- 1. Учебная аудитория для проведения лекционных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оснащение: комплект учебной мебели, рабочее место преподавателя, доска. Мультимедийное оборудование (в том числе переносное): мультимедийный проектор, экран, акустическая система, компьютер с выходом в интернет.
- 2. Учебная аудитория для проведения лабораторных/практических (семинарских) занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оснащение: комплект учебной мебели, рабочее место преподавателя, доска. Мультимедийное оборудование (в том числе переносное): мультимедийный проектор, экран, акустическая система, компьютер с выходом в интернет.