Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Структурное подразделение «Электрических станций, сетей и систем»

УТВЕРЖДЕНА:

Рабочая программа дисциплины

«МЕТОДОЛОГИЯ СОЗДАНИЯ ИНТЕЛЛЕКТУАЛЬНЫХ ЭНЕРГЕТИЧЕСКИХ СИСТЕМ»

Направление: 13.04.02 Электроэнергетика и электротехника
Цифровая электроэнергетика
Квалификация: Магистр
Форма обучения: очная

Документ подписан простой электронной подписью Составитель программы: Муссонов Геннадий Петрович Дата подписания: 22.05.2025

Документ подписан простой электронной подписью Утвердил: Федосов Денис

Сергеевич

Дата подписания: 24.05.2025

Документ подписан простой электронной подписью Согласовал: Шушпанов Илья Николаевич

Дата подписания: 23.05.2025

1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

1.1 Дисциплина «Методология создания интеллектуальных энергетических систем» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции		
ОПК-1 Способен формулировать цели и задачи			
исследования, выявлять приоритеты решения задач,	ОПК-1.3		
выбирать критерии оценки			
УК-2 Способен управлять проектом на всех этапах	УК-2.2		
его жизненного цикла	y K-2.2		

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
УК-2.2	Составляет план действий по созданию и управлению проектами, оценивает показатели проекта	Знать основы создания проекта интеллектуальной энергетической системы Уметь управлять проектом создания интеллектуальной энергетической системы Владеть навыками оценки показателей проекта по созданию интеллектуальных электроэнергетических систем
ОПК-1.3	Формулирует критерии принятия решений при работе над профессиональными задачами	Знать концепции интеллектуальных энергосистем и основные математические методы и подходы для их построения Уметь проводить научные исследования по созданию интеллектуальных электроэнергетических систем Владеть навыками оценки перспективных решений по созданию интеллектуальных электроэнергетических систем

2 Место дисциплины в структуре ООП

Изучение дисциплины «Методология создания интеллектуальных энергетических систем» базируется на результатах освоения следующих дисциплин/практик: «Современные проблемы электроэнергетики и электротехники», «Проблемы развития и функционирования ЭЭС в современных условиях»

Дисциплина является предшествующей для дисциплин/практик: «Компьютерные, сетевые и информационные технологии», «Производственная практика: преддипломная практика»

3 Объем дисциплины

Объем дисциплины составляет – 3 ЗЕТ

Вид учебной работы	Трудоемкость в академич (Один академический час со минутам астрономическ	ответствует 45
	Всего	Семестр № 2
Общая трудоемкость дисциплины	108	108
Аудиторные занятия, в том числе:	39	39
лекции	13	13
лабораторные работы	0	0
практические/семинарские занятия	26	26
Контактная работа, в том числе	0	0
в форме работы в электронной информационной образовательной среде	0	0
Самостоятельная работа (в т.ч. курсовое проектирование)	69	69
Трудоемкость промежуточной аттестации	0	0
Вид промежуточной аттестации (итогового контроля по дисциплине)	Зачет	Зачет

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр № 2

	II	Виды контактной работы			Виды контактной работы			C	PC	Ф
N₂	№ Наименование п/п раздела и темы дисциплины	Лекции		ЛР ПЗ(П3(0	(CEM)		PC	Форма
п/п		Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Интеллектуальны е энергосистемы: новые перспективы и умные технологии	1	2					1, 2	4	Устный опрос
2	Марковские процессы принятия решений в задачах электроэнергетик и	2	2			1, 4	6	1, 2	8	Устный опрос
3	Стохастическая, онлайн и робастная оптимизация в современной энергетике	3	2			2, 6	8	1, 2, 3	17	Устный опрос
4	Двухуровневая	4	2					1, 2	12	Устный

	оптимизация, теория игр и гибкость энергосистем								опрос
5	Регрессия, корреляция в энергетике	5	2		3	4	1, 2, 3	17	Устный опрос
6	Использование технологий искусственного интеллекта в электроэнергетик е	6	3		5, 7	8	1, 2	11	Устный опрос
	Промежуточная аттестация								Зачет
	Всего		13			26		69	

4.2 Краткое содержание разделов и тем занятий

Семестр № 2

N₂	Тема	Краткое содержание
1	Интеллектуальные	Умные энергосистемы. Понятие цифровой
	энергосистемы: новые	электрической сети. Искусственный интеллект.
	перспективы и умные	Блокчейн. Промышленный интернет вещей.
	технологии	Проекты применения интеллектуальных
		технологий в электроэнергетике.
2	Марковские процессы	Марковский процесс принятия решений (МППР).
	принятия решений в	Примеры использования МППР в современной
	задачах	электроэнергетики. Алгоритмы нахождения
	электроэнергетики	оптимальной стратегии. Принцип оптимальности
		Беллмана. Активное управление распредсетью.
3	Стохастическая, онлайн	Общая постановка задачи оптимизации.
	и робастная	Стохастическая оптимизация. Онлайн-
	оптимизация в	оптимизация. Робастная оптимизация.
	современной	
_	энергетике	
4	Двухуровневая	Понятие гибкости энергосистемы. Виды гибкости
	оптимизация, теория	в энергосистеме. Меры повышения гибкости.
	игр и гибкость	Двухуровневая оптимизация. Двухуровневая
	энергосистем	оптимизация в задачах энергообмена между
		сетями передачи и распределения электроэнергии.
		Основы теории игр.
5	Регрессия, корреляция в	Понятие регрессии. Регрессионный анализ.
	энергетике	Корреляционный анализ. Коэффициенты
		корреляции. Корреляция и её статистическая
		значимость.
6	Использование	Экспертные системы. Мультиагентные системы.
	технологий	Нечёткие системы управления. Модели
	искусственного	машинного обучения. Примеры использования
	интеллекта в	машинного обучения в электроэнергетике
	электроэнергетике	

4.3 Перечень лабораторных работ

4.4 Перечень практических занятий

Семестр № 2

N₂	Темы практических (семинарских) занятий	Кол-во академических часов
1	Случайные события в электроэнергетике	2
2	Применение математической статистики в задачах электроэнергетики	4
3	Практика применения корреляционного и регрессионного анализов в электроэнергетике	4
4	Методы расчёта систем нелинейных алгебраических уравнений установившегося режима	4
5	Метод роя частиц в задачах электроэнергетики	4
6	Динамическая оптимизация систем управления в энергетических системах	4
7	Прогнозирование параметров энергосистемы на базе машинного обучения	4

4.5 Самостоятельная работа

Семестр № 2

No	Вид СРС	Кол-во академических часов
1	Подготовка к зачёту	31
2	Подготовка к практическим занятиям (лабораторным работам)	24
3	Решение специальных задач	14

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: дискуссия, проводимая в форме публичного обсуждения по поводу заданного спорного вопроса, проблемы

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по практическим занятиям

Практические занятия направлены на закрепление теоретических знаний, более глубокое освоение уже имеющихся у студентов умений и навыков и приобретение новых умений и навыков, необходимых для формирования компетенций, предусмотренных основной образовательной программой.

Цель практического занятия: выработка основных умений и навыков, связанных с решением примеров и задач.

Задание на практическое занятие:

- условия задач по соответствующей теме выдаются студентам в начале занятия;
- для более успевающих студентов предусматриваются дополнительные задания повышенной сложности.

Требования по выполнению заданий:

- все задачи следует решать подробно. Вычисления должны быть расположены в логическом порядке;
- графическую часть можно выполнять от руки в соответствии с данными условиями. Если рисунок требует точного выполнения, то следует пользоваться линейкой с указанием масштаба;
- решение каждой задачи должно быть доведено до окончательного ответа, которого требует условие, и, по возможности, проведено в общем виде. Затем в полученное выражение подставляют числовые значения (если таковые даны) входящих в нее переменных.

Ход занятия:

- повторение соответствующего теоретического материала, который был рассмотрен на лекции. Студент должен иметь при себе конспект лекций и тетрадь для практических занятий:
- решение студентами типовых задач на доске под контролем и с пояснениями преподавателя;
- самостоятельное решение задач. Преподаватель контролирует процесс, при необходимости консультируя студентов, добиваясь, чтобы каждый студент включился в практическую работу;
- в конце занятия преподаватель анализирует работу студентов и оценивает участие каждого в процессе решения задач.

5.1.2 Методические указания для обучающихся по самостоятельной работе:

Подготовка к практическим занятиям – выполнение заданий по практическим занятиям с последующей их защитой.

Подготовка к зачету – изучение основной и дополнительной литературы, подготовка по предварительно выданным контрольным вопросам.

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 семестр 2 | Устный опрос

Описание процедуры.

позволяет не только опрашивать и контролировать знания обучающихся, но и сразу же поправлять, повторять и закреплять знания, умения и навыки.

Проводится в виде устных тестов. Обучающийся выбирает один вариант из нескольких предложенных, свой ответ он должен обосновать. Опрос занимает минимум времени, используется на этапах повторения и закрепления темы.

Критерии оценивания.

Показывает всестороннее и глубокое знание учебного и нормативного материала (зачтено). Показывает пробелы в знаниях основного учебного материала, допускает принципиальные ошибки в ответах (не зачтено).

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
УК-2.2	Самостоятельно составляет подробный и обоснованный план действий по созданию и управлению проектом, способен разработать систему оценивания и оценить показатели проекта интеллектуальной энергетической системы	Тестирование, устное собеседование на зачёте, выполнение практических заданий
ОПК-1.3	Обоснованно формулирует цели и задачи исследования, формирует критерии принятия решений при создании и развитии интеллектуальных энергетических систем	Тестирование, устное собеседование на зачёте, выполнение практических заданий

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 2, Типовые оценочные средства для проведения зачета по дисциплине

6.2.2.1.1 Описание процедуры

Зачёты проводятся по билетам, составленным в соответствии с программой курса. В случае организации проведения зачёта в форме тестирования, тесты формируются на основе набора тестовых заданий по дисциплине, утвержденных заведующим кафедрой. Перечень теоретических и практических вопросов, включенных в билеты, форма и порядок проведения зачёта доводятся до сведения обучающихся не позднее, чем за месяц до начала экзаменационной сессии.

Преподаватель имеет право с целью более глубокого выяснения уровня знаний студента задавать ему дополнительные вопросы, а также задачи в рамках программы дисциплины.

6.2.2.1.2 Критерии оценивания

Зачтено	Не зачтено
Показывает полное знание учебного	Показывает пробелы в знаниях основного
материала, успешно выполняет	учебного материала, допускает
предусмотренные в программе задания,	принципиальные ошибки в выполнении
усвоил основное содержание литературы,	предусмотренных программой заданий
рекомендованной в программе.	
Показывает систематический характер	
знаний по дисциплине и способен к их	
самостоятельному пополнению и	
обновлению в ходе дальнейшей учебной	
работы и профессиональной деятельности	

7 Основная учебная литература

- 1. Дополнительные главы математики [Электронный ресурс] : методические указания для выполнения практических занятий для магистров направления подготовки 140600 "Электротехника, электромеханика и электротехнологии" / Иркут. гос. техн. ун-т, 2012. 67.
- 2. Дополнительные главы математики [Электронный ресурс] : методические указания для самостоятельной работы магистров направления подготовки 140600 "Электротехника, электромеханика и электротехнологии" / Иркут. гос. техн. ун-т, 2012. 32.
- 3. Муссонов Γ . П. Дополнительные главы математики [Электронный ресурс] : учебное пособие / Γ . П. Муссонов, 2011. 57.

8 Дополнительная учебная литература и справочная

- 1. Ручкин В. Н. Универсальный искусственный интеллект и экспертные системы : [учебное пособие для вузов] / В. Н. Ручкин, В. А. Фулин, 2009. 238.
- 2. Алпайдин Э. Машинное обучение: новый искусственный интеллект: перевод с английского / Э. Алпайдин, 2017. XII.; 191.
- 3. Бухгольц Б. М. Smart Grids-основы и технологии энергосистем будущего / Б. М. Бухгольц, З. А. Стычински, 2017. 459.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/

11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем

- 1. Microsoft Office 2003 VLK (поставки 2007 и 2008)
- 2. Microsoft Windows (XP Prof + Vista Bussines) rus VLK поставка 08_2007
- 3. Microsoft Office 2007 VLK (поставки 2007 и 2008)
- 4. Microsoft Windows XP Prof rus (с активацией, коммерческая)
- 5. Microsoft Office 2007 Standard 2003 Suites и 2007 Suites поставка 2010
- 6. Microsoft Office 2003 rus для BPTNK

12 Материально-техническое обеспечение дисциплины

1. Аудитория с мультимедийным проектором