Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Структурное подразделение «Электропривода и электрического транспорта»

УТВЕРЖДЕНА:

на заседании кафедры Протокол №8 от <u>19 мая 2025</u> г.

Рабочая программа дисциплины

«ЭЛЕКТРИЧЕСКИЙ ПРИВОД»
11
Направление: 13.03.02 Электроэнергетика и электротехника
Электрооборудование и автоматизация в промышленности и энергетике
Квалификация: Бакалавр
Форма обучения: заочная

Документ подписан простой электронной подписью

Составитель программы: Павлов Владимир

Евгеньевич

Дата подписания: 08.06.2025

Документ подписан простой электронной подписью

Утвердил и согласовал: Арсентьев Олег

Васильевич

Дата подписания: 19.06.2025

1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

1.1 Дисциплина «Электрический привод» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ПКР-2 Способность к оформлению технической	
документации на различных стадиях разработки	ПКР-2.2, ПКР-2.3
проекта объекта профессиональной деятельности	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ПКР-2.2	Демонстрирует понимание конструкции, принципов действия и основных технических параметров электрического привода, разрабатывает схемные и модельные решения в виде технической документации	Знать требования действующих нормативнотехнических документов Уметь выполнять разработку технической документации для проекта в области электрического привода Владеть выполнять разработку технической документации для проекта в области электрического привода
ПКР-2.3	Выполняет разработку технической документации для проекта в области электрического привода в соответствии с требованиями действующих нормативнотехнических документов	Знать требования действующих нормативнотехнических документов Уметь Уметь - выполнять разработку технической документации для проекта в области электрического привода Владеть Владеть навыком практической реализации результатов расчета для конкретных электроприводов.

2 Место дисциплины в структуре ООП

Изучение дисциплины «Электрический привод» базируется на результатах освоения следующих дисциплин/практик: «Математика», «Силовая электроника», «Системы автоматического управления», «Теоретические основы электротехники», «Электрические машины»

Дисциплина является предшествующей для дисциплин/практик: «Асинхронный электропривод», «Математическое моделирование в энергетике и электротехнике», «Микропроцессорные средства и системы», «Моделирование оборудования электроустановок», «Системы автоматического управления»

3 Объем дисциплины

Объем дисциплины составляет – 5 ЗЕТ

Вид учебной работы	Трудоемкость в академических часах (Один академический час соответствует 45 минутам астрономического часа)					
вид учеоной расоты	Всего	Учебн ый год № 3	Учебный год № 4			
Общая трудоемкость дисциплины	180	36	144			
Аудиторные занятия, в том числе:	22	2	20			
лекции	10	2	8			
лабораторные работы	4	0	4			
практические/семинарские занятия	8	0	8			
Самостоятельная работа (в т.ч. курсовое проектирование)	149	34	115			
Трудоемкость промежуточной аттестации	9	0	9			
Вид промежуточной аттестации (итогового контроля по дисциплине)	, Экзамен, Курсовой проект		Экзамен, Курсовой проект			

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Учебный год № <u>3</u>

	11		Видь	і конта	ктной ра	боты		CPC		Ф
No	Наименование	Лек	ции	J	IP	П3(0	CEM)	C.	PC	Форма текущего
п/п	п/п раздела и темы - дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	контроля
1	2	3	4	5	6	7	8	9	10	11
1	Электропривод как система; структурная схема электропривода. Классификация электроприводов	1	1					1, 2,	34	Тест
2	Механическая часть силового канала электропривода. Уравнения механического движения . Приведение элементов механической части Многомассовые механические системы Установившееся	2	1							Тест

3	цвижение электропривода. Устойчивость цвижения.					
	Промежуточная					
d	аттестация					
E	Всего	2			34	

Учебный год **№** <u>4</u>

	II		Видь	і контаі	ктной ра	боты		C	DC	Форма
N_{0}	№ Наименование		Лекции		IP .		CEM)		PC	Форма текущего
п/п	раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	контроля
1	2	3	4	5	6	7	8	9	10	11
1	Физические процессы в электроприводах с машинами постоянного тока, асинхронными и синхронными машинами. Электромеханиче ские свойства электромеханиче ские свойства двигателей постоянного тока.	1	4	1, 3	2	1	2	3	30	Тест
2	Регулирование координат электроприводов. Регулирование координат электроприводов постоянного и переменного тока.	2	2	2	1	2, 3	6	4, 5	40	Тест
3	Переходные процессы в электроприводах.	3	1	4	1			2	15	Тест
4	Расчет мощности электропривода. Проверка электродвигателе й по нагреву	4	1					1	30	Тест
	Промежуточная аттестация								9	Экзамен, Курсовой проект
	Всего		8		4		8		124	

4.2 Краткое содержание разделов и тем занятий

Учебный год № <u>3</u>

N₂	Тема	Краткое содержание
1	Электропривод как	Электрическим приводом называется
	система; структурная	электромеханическая система, состоящая из
	схема электропривода.	электродвигательного, преобразовательного,

	Классификация	передаточного и управляющего устройств,
	электроприводов	предназначенная для приведения в движение
		исполнительных органов рабочей машины и
		управления этим движением. Для выполнения этих
		функций электропривод вырабатывает
		механическую энергию за счет электрической
		энергии, получаемой им от источника
		электрической энергии (сети электроснабжении).
2	Механическая часть	Механическое движение от вала двигателя к
	силового канала	исполнительному органу передается с помощью
	электропривода.	механического передаточного устройства (МПУ) ,
	Уравнения	которое в общем случае включает в себя
	механического	различные механические элементы шестерни,
	движения . Приведение	канаты, валы, муфты сцепления, шкивы и т. д. Эти
	элементов	элементы вращаются или движутся поступательно
	механической части	с разной скоростью, имеют определенную
	Многомассовые	жесткость и момент инерции (массу), а соединения
	механические системы	между ними в общем случае содержат зазоры.
	Установившееся	Наличие этих свойств элементов МПУ вносит
	движение	определенные искажения в процесс передачи
	электропривода.	движения от двигателя к исполнительному органу
	Устойчивость	и требует соответствующего учета. Анализ
	движения.	механического движения осуществляется с
		помощью расчетных схем электропривода,
		получаемых по определенным правилам.

Учебный год **№ 4**

	_	
No	Тема	Краткое содержание
1	Физические процессы в	Вывод уравнений для характеристик ДПТНВ
	электроприводах с	проведем при следующих допущениях: реакция
	машинами постоянного	якоря не учитывается; момент на валу двигателя
	тока, асинхронными и	равен электромагнитному моменту.В основе
	синхронными	вывода лежат уравнение электрического
	машинами.	равновесия цепи якоря и выражения ЭДС и
	Электромеханические	момента ДПТНВ. Тормозные режимы ДПТНВ:
	свойства	рекуперативное торможение, динамическое
	электроприводов.	торможении, торможение
	Электромеханические	противовключением. Основной особенностью ДПТ
	свойства двигателей	последовательного возбуждения (ДПТПВ)
	постоянного тока.	является включение его обмотки возбуждения ОВ
		последовательно с обмоткой якоря, вследствие
		чего ток яко-ря одновременно является и током
		возбуждения. При получении выражений для
		статических характеристик ДПТПВ используем те
		же допущения, что и для ДПТНВ. Особенностью
		такого ДПТ является отсутствие у него
		генераторного режима работы параллельно с
		сетью (режима рекуперативного торможения).
		Характеристики ДПТ не пересекают ось скорости
		и не переходят во второй квадрант. Для ДПТПВ не
		может быть однозначно определена скорость

		идеального холостого хода.
2	Регулирование	Семейство искусственных (регулировочных)
	координат	характеристик ДПТ можно получить,
	электроприводов.Регул	проанализировав, например, как изменяется
	ирование координат	скорость холостого ДПТ .Регулирование
	электроприводов	магнитного потока производится только в сторону
	постоянного и	его уменьшения (ослабления) по сравнению с
	переменного тока.	номинальны за счет уменьшения тока
		возбуждения. Регулирование напряжения в
		системе Г-Д на якоре ДПТ происходит за счет
		изменения тока возбуждения генератора, при
		регулировании которого изменяется ЭДС Ег и
		соответственно напряжение Регулирование
		напряжения в этой системе может сочетаться с
		воздействием на магнитный поток ДПТ, что
		обеспечивает двухзонное регулирование скорости.
		Основным типом преобразователей, применяемых
		в настоящее время в регулируемом
		электроприводе постоянного тока, являются
		тиристорные преобразователи. Они представляют
		собой управляемые реверсивные или
		нереверсивные выпрямители, собранные по
		нулевой или мостовой однофазной или трехфазной
		схеме.
3	Переходные процессы в	Неустановившимися или переходными
J	электроприводах.	называются процессы, которые возникают в
	электроприводах.	электроприводе при его переходе из одного
		установившегося состояния к другому. Можно
		назвать следующие основные причины
		возникновения переходных процессов:-
		изменения нагрузки Мс на валу двигателя;-
		изменение момента двигателя при переходе
		двигателя из одной характеристики на другую при
		пуске, торможении, реверсе и регулировании
		скорости; - изменением параметров привода;-
		колебаниями напряжения питания;Переход из
		одного установившегося состояния к другому
		вследствие наличия раз-личного рода
		инерционностей совершается не мгновенно, а во
		времени. При этом изме-няются во времени как
		механические (скорость, ускорение, угловое
		перемещение), так и электрические величины (ток,
		ЭДС и др.).К механическим переходным
		процессам относятся те, в которых учитывается
		только механическая инерция системы, а влиянием
		электромагнитной и тепловой инерционностью
		пренебрегают.Линейную механическую
		характеристику имеют электроприводы с
		двигателями постоянного тока независимого
		возбуждения, а также с некоторым приближением
		приво-ды с асинхронными двигателями с фазным

ротором, работающими на естествен реостатной характеристиках. 4 Расчет мощности Расчет мощности и выбор двигателя	
4 Расчет мощности Расчет мощности и выбор двигателя	должен
'	і должен
	, ,
электропривода. производиться с учетом требований	
Проверка техуологического процесса и режим	а работы
электродвигателей по производственного механизма. Мно	гообразие
нагреву реальных режимов работы рабочих г	машин,
которые отличаются величиною и ха	арактером
изменения нагрузки и скорости в теч	чение цикла,
его продолжительностью, соотноше	нием времени
работы и паузы, обуславливает такж	ке различные
режимы работы электродвигтаелей.	Согласно
международной классификации	
предусматривается восемькоторой п	ревышение
температуры всех частей двигателя ,	достигает
установившегося зна-чения. основн	ых ре-жимов
работы двигатель, которые условно	обозначены
S1S8. Основными факторами, леж	кащими в
основе этой классификации, являют	ся особенности
нагревания и охлаждения двигателе	й, а также
характер изменения нагрузки. Продо	олжительный
номинальный режим работы S1 хара	актеризуется
неизменной нагрузкой и продолжит	ельной
работой, в течение которой превыше	ение
температуры всех частей двигателя,	достигает
установившегося значения.	

4.3 Перечень лабораторных работ

Учебный год № <u>4</u>

No	Наименование лабораторной работы	Кол-во академических часов
1	ИССЛЕДОВАНИЕ ЭЛЕКТРОДВИГАТЕЛЯ	4
1	ПОСТОЯННОГО ТОКА НЕЗАВИСИМОГО ВОЗБУЖДЕНИЯ	1
	ИССЛЕДОВАНИЕ РАЗОМКНУТОЙ	
2	СИСТЕМЫ "ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ	1
	– АСИНХРОННЫЙ ДВИГАТЕЛЬ"	
	ИССЛЕДОВАНИЕ АСИНХРОННОГО	
3	ЭЛЕКТРОДВИГАТЕЛЯ С	1
	КОРОТКОЗАМКНУТЫМ РОТОРОМ	
4	ФОРМИРОВАНИЕ ПЕРЕХОДНЫХ	
	ПРОЦЕССОВ ПРИ ЛИНЕЙНОМ	1
	НАРАСТАНИИ УПРАВЛЯЮЩИХ	1
	воздействий	

4.4 Перечень практических занятий

Учебный год № <u>4</u>

No	Темы практических (семинарских) занят	ий Кол-во академических

		часов
1	Задача№1. Механика электропивода.	2
2	Задача №2. Расчёт характеристик двигателя постоянного тока	2
3	Задача №3. Расчёт характеристик асинхронного двигателя	4

4.5 Самостоятельная работа

Учебный год № 3

N₂	Вид СРС	Кол-во академических часов
1	Выполнение тренировочных и обучающих тестов в дистанционном режиме	14
2	Подготовка к практическим занятиям (лабораторным работам)	10
3	Подготовка к сдаче и защите отчетов	10

Учебный год № <u>4</u>

N₂	Вид СРС	Кол-во академических часов
1	Выполнение компьютерных экспериментов и компьютерных лабораторных работ в дистанционном режиме	30
2	Выполнение тренировочных и обучающих тестов в дистанционном режиме	15
3	Написание курсового проекта (работы)	30
4	Оформление отчетов по лабораторным и практическим работам	10
5	Подготовка к практическим занятиям (лабораторным работам)	30

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: В ходе проведения лекций, практических и лабораторных работ используются следующие интерактивные методы обучения: _ Разбор конкретных ситуаций

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по курсовому проектированию/работе:

Электрический привод [Электронный ресурс] : методические указания по выполнению курсового проекта:

направление 13.03.02 "Электроэнергетика и электротехника": профиль "Электропривод и автоматика":

квалификация бакалавр / Иркут. нац. исслед. техн. ун-т, Ин-т энергетики, Каф. электропривода и

электр. трансп., 2018. - 18 с. http://elib.istu.edu/viewer/view.php?file=/files/er-15155.

5.1.2 Методические указания для обучающихся по практическим занятиям

Электрический привод [Электронный ресурс] : методические указания для аудиторных занятий (практические занятия): направление 13.03.02 "Электроэнергетика и электротехника": профиль "Электропривод и автоматика": квалификация бакалавр / Иркутский национальный исследовательский технический университет, 2018. - 16 с. http://elib.istu.edu/viewer/view.php?file=/files/er-15157.pdf

5.1.3 Методические указания для обучающихся по лабораторным работам:

Электрический привод [Электронный ресурс] : методические указания для аудиторных занятий (лабораторные работы): направление 13.03.02 "Электроэнергетика и электротехника": профиль "Электропривод и автоматика": квалификация бакалавр / Иркут. нац. исслед. техн. ун-т, Ин-т энергетики, Каф. электропривода и электр. трансп., 2018. - 49 c. http://elib.istu.edu/viewer/view.php?file=/files/er-15156.pdf

5.1.4 Методические указания для обучающихся по самостоятельной работе:

Электрический привод [Электронный ресурс]: методические указания по самостоятельной работе: направление 13.03.02 "Электроэнергетика и электротехника": профиль "Электропривод и автоматика": квалификация бакалавр / Иркут. нац. исслед. техн. ун-т, 2018. - 30 с. http://elib.istu.edu/viewer/view.php?file=/files/er-15232.pdf

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 учебный год 3 | Тест

Описание процедуры.

Экзамен проводится в форме тестирования

Критерии оценивания.

Критерии оценки:

Зачтено: полный и правильно оформленный отчет о лабораторной работе, правильные ответы на не менее чем 60% вопросов для контроля.

Не зачтено: неполный и/или неправильно оформленный отчет о лабораторной работе, правильные ответы на менее чем 60% вопросов для контроля

6.1.2 учебный год 4 | Тест

Описание процедуры.

Экзамен проводится в форме тестирования

Критерии оценивания.

Критерии оценки:

Зачтено: полный и правильно оформленный отчет о лабораторной работе, правильные

ответы на не менее чем 60% вопросов для контроля.

Не зачтено: неполный и/или неправильно оформленный отчет о лабораторной работе, правильные ответы на менее чем 60% вопросов для контроля

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
ПКР-2.2	выполнять разработку технической документации для проекта в области электрического привода	Устное собеседование по теоретическим вопросам и/или тестирование. Выполнение практического задания.
ПКР-2.3	Выполняет разработку технической документации для проекта в области электрического привода в соответствии с требованиями действующих нормативнотехнических документов	Устное собеседование по теоретическим вопросам и/или тестирование. Выполнение практического задания.

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Учебный год 4, Типовые оценочные средства для проведения экзамена по дисциплине

6.2.2.1.1 Описание процедуры

Экзамен проводится в форме тестирования

Пример задания:

Пример задания:

ВАРИАНТ 1

Знать параметры различных типов электроприводов

1.У электроприводов с двигателями постоянного тока независимого возбуждения естественная механическая характеристика:

16

- 1. абсолютно жёсткая
- 2. мягкая
- 3. абсолютно мягкая
- 4. жёсткая

- 2. Э.Д.С. Е, индуктируемая в якоре двигателя постоянного тока независимого возбуждения, не может возникнуть при отсутствии:
- а) ω и Ф
- b) Iя
- c) M
- d) R добавочное
- 3. Как изменится механическая характеристика асинхронного двигателя при снижении напряжения сети?
- а. Характеристика пройдет через новое значение синхронной скорости.
- b. Характеристика не изменится .
- с. Уменьшатся жесткость характеристики и Мтах
- d. Увеличатся жесткость характеристики и Mmax
- 4. В каких случаях применяется система электропривода «механический вал»?
- 1) по конструктивным соображениям;
- 2) с целью уменьшения момента инерции электропривода (повышения быстродействия);
- 3) из-за невозможности выполнения привода большой мощности с применением одного двигателя;
- 4) для формирования определённого вида механических характеристик;
- 5) по всем вышеперечисленным причинам.
- 5. Какая из представленных на рисунке характеристик соответсвует механической характеристике асинхронного двигателя, имеющего 4 пары полюсов (f = 50 гц)? Об/мин

3000 a

- а) Характеристика а
- б) Характеристика б 1500 б
- в) Характеристика в 1000 в
- г) Характеристика г 750

Γ

M

Уметь использовать расчетные методики для определения параметров электроприводов.

6. Определить число пар полюсов р асинхронного двигателя, имеющего паспортные данные n ном. = 970 об/мин., f = 50 гц

```
f) p = 1
```

g) p = 5

h) p = 4

i) p = 2

i) p = 3

7. В каком из выражений допущена ошибка?

1. c)

d)

f)

8. При работе двигателя в точке А справедливо соотношение:

17

a) In =
$$(U - E) / R \omega$$

- b) I $_{\rm H} = (U + E) / R A$
- c) $I_{\text{H}} = U / R M$
- d) $-I_R = E / R$
- e) Ig = (E U) / R

Владеть навыком работы с электроприводами постоянного и переменного тока.

9. Каким способом включить трехфазный асинхронный двигатель с паспортными данными

- $Y / \Delta 380/220 \ B$ в сеть с линейным напряжением 220 B, чтобы он работал на естественной механической характеристике?
- е) Любым способом
- f) Звездой
- g) Треугольником
- h) Естественной характеристики получить нельзя
- 10. Ограничить величину пускового тока при пуске двигателя постоянного тока параллельного возбуждения можно:
- е) пуском двигателя вхолостую
- f) введением Rдоб в цепь возбуждения
- g) снижением напряжения цепи якоря
- h) включением обмотки якоря в сеть, не возбуждая двигатель

6.2.2.1.2 Критерии оценивания

Отлично	Хорошо	Удовлетворительн о	Неудовлетворительно
Правильно	Почти всегда	Правильно	Не умеет правильно
выполняет	правильно	выполняет	выполнять разработку
разработку	выполняет	разработку	технической
технической	разработку	технической	документации для
документации для	технической	документации для	проекта в области
проекта в области	документации для	проекта в области	электрического
электрического	проекта в области	электрического	привода в
привода в	электрического	привода	соответствии с
соответствии с	привода в		требованиями
требованиями	соответствии с		действующих
действующих	требованиями		нормативно-
нормативно-	действующих		технических
технических	нормативно-		документов
документов	технических		
	документов		

6.2.2.2 Учебный год 4, Типовые оценочные средства для курсовой работы/курсового проектирования по дисциплине

6.2.2.2.1 Описание процедуры

Расчёт характеристик электроприводов постоянного и переменного тока по вариантам

Пример задания:

Необходимо выполнить:

1 Для грузоподъёмной тележки, имеющей противовес, движущейся по наклонному рельсовому пути под углом а к горизонту с помощью троса, перекинутого через барабан лебедки, необходимо: 1. Определить силы, действующие на трос со стороны тележки с грузом и противо-веса, моменты статических сопротивлений на барабане и валу двигателя и мощности, развиваемые электродвигателем: а). при подъёме тележки с полным грузом и спуске пустой тележки с установившейся скоростью Vуст; б). при спуске тележки с полным грузом со скоростью, равной 0,75 Vуст. 2. Определить суммарный приведённый к валу электродвигателя момент инерции вращающего барабана лебедки и движущейся поступательно тележки.

2 Для привода грузоподъёмного механизма используется электродвигатель постоян-ного тока. Требуется: 1.По данным каталога для электродвигателя построить естественные электроме-ханическую и механическую характеристики. 2.Рассчитать графическим и аналитическим методами пусковой реостат при за-данном числе пуска – m, считая, что пуск осуществляется с нагрузкой, равной номинальной. З.Рассчитать время разгона на каждой ступени и общее время пуска, приняв приведенный к валу электродвигателя момент инерции механизма Jпр, равным половине момента инерции электродвигателя Јдв. 4.Определить величину добавочного сопротивления, включаемого в цепь якоря электродвигателя при подъёме номинального груза со скоростью, равной половине номинальной. Построить соответствующие искусственные электроме-ханическую и механическую характеристики. 5.Определить графическим и аналитическим методами величину добавочного сопротивления, включаемого в цепь якоря электродвигателя для осуществле-ния тормозного спуска противовключением с половинной скоростью, считая нагрузку при спуске равной 0,75 от номинальной. 6.Определить величину добавочного сопротивления, включаемого в цепь якоря электродвигателя при тормозном спуске в режиме динамического торможения с половинной скоростью, считая нагрузку двигателя при спуске равной 0,75 от номинальной. 7.Вычертить принципиальную схему включения электродвигателя, реализую-щего все режимы работы.

З Для привода грузоподъёмного механизма используется асинхронный двигатель с фазным ротором. Требуется: 1. По данным каталога для электродвигателя построить естественные электромеханическую и механическую характеристики. 2. Рассчитать графическим и аналитическим методами пусковой реостат при заданном числе пуска – m, считая, что пуск осуществляется с нагрузкой, равной номинальной. З. Рассчитать время разгона на каждой ступени и общее время пуска, приняв приведенный к валу электродвигателя момент инерции механизма Jпр, равным половине момента инерции электродвигателя Јдв. 4. Определить величину добавочного сопротивления, включаемого в цепь ротора электродвигателя при подъёме номинального груза со скоростью, равной половине номинальной. Построить соответствующие искусственные электромеханическую и механическую характеристики. 5. Определить графическим и аналитическим методами величину добавочного сопротивления, включаемого в цепь ротора электродвигателя для осуществ-ления тормозного спуска противовключением с половинной скоростью, считая нагрузку при спуске равной 0,75 от номинальной. 6. Вычертить принципиальную схему включения электродвигателя, реали-зующего все режимы работы.

Описание процедуры:

Проверка пояснительной записки и графической части курсового проекта.

Устный опрос по теоретическому материалу курсового проекта.

Анализ расчетных статических характеристик системы электропривода Вопросы для контроля:

- Для чего нужен противовес?
- Как правильно выбрать вес противовеса?
- Как определить усилие на барабане лебёдки при подъёме гружённой тележки?
- Как определить усилие на барабане лебёдки при спуске гружённой тележки?
- Как определить усилие на барабане лебёдки при спуске пустой тележки?
- Как определить момент сил сопротивления на валу двигателя?
- Для чего нужен редуктор?
- Как определить режим работы электропривода?
- Как построить естественную электромеханическую (механическую характеристику ДПТНВ?
- Назначение пускового реостата?
- Порядок расчёта пускового реостата.

- Как рассчитать время работы реостата на каждой ступени?
- Порядок построения диаграммы пуска ДПТНВ?
- Как осуществить работу ДПТНВ с половинной скоростью?
- Как осуществить тормозные режимы ДПТНВ?
- \bullet Как построить естественную электромеханическую (механическую характеристику АД ?
- Назначение пускового реостата?
- Порядок расчёта пускового реостата.
- Как рассчитать время работы реостата на каждой ступени?
- Порядок построения диаграммы пуска АД?
- Как осуществить работу АД с фазным ротором с половинной скоростью?
- Как осуществить тормозные режимы АД?_

6.2.2.2 Критерии оценивания

Отлично	Хорошо	Удовлетворительн о	Неудовлетворительно
Правильно	Почти всегда	Правильно	Не умеет правильно
выполняет	правильно	выполняет	выполнять разработку
разработку	выполняет	разработку	технической
технической	разработку	технической	документации для
документации для	технической	документации для	проекта в области
проекта в области	документации для	проекта в области	электрического
электрического	проекта в области	электрического	привода в
привода в	электрического	привода	соответствии с
соответствии с	привода в		требованиями
требованиями	соответствии с		действующих
действующих	требованиями		нормативно-
нормативно-	действующих		технических
технических	нормативно-		документов
	технических		
	документо		

7 Основная учебная литература

- 1. Электрический привод : методические указания для самостоятельной работы студентов (курсовой проект) / Иркут. гос. техн. ун-т, 2014. 20.
- 2. Онищенко Георгий Борисович. Электрический привод : учебник для вузов по направлению 140400 "Электроэнергетика и электротехника" / Г. Б. Онищенко, 2013. 287.
- 3. Электрический привод : методические указания по выполнению курсового проекта: направление 13.03.02 "Электроэнергетика и электротехника": профиль "Электропривод и автоматика": квалификация бакалавр / Иркут. нац. исслед. техн. ун-т, Ин-т энергетики, Каф. электропривода и электр. трансп., 2018. 18.
- 4. Электрический привод : методические указания для аудиторных занятий (лабораторные работы): направление 13.03.02 "Электроэнергетика и электротехника": профиль "Электропривод и автоматика": квалификация бакалавр / Иркут. нац. исслед. техн. ун-т, Ин-т энергетики, Каф. электропривода и электр. трансп., 2018. 49.
- 5. Электрический привод : методические указания для аудиторных занятий (практические занятия): направление 13.03.02 "Электроэнергетика и электротехника": профиль

- "Электропривод и автоматика": квалификация бакалавр / Иркутский национальный исследовательский технический университет, 2018. 16.
- 6. Электрический привод : методические указания по самостоятельной работе: направление 13.03.02 "Электроэнергетика и электротехника": профиль "Электропривод и автоматика": квалификация бакалавр / Иркут. нац. исслед. техн. ун-т, 2018. 30.

8 Дополнительная учебная литература и справочная

- 1. Пионкевич В. А. Электрический привод. Моделирование электрического привода в системе MATLAB: учебное пособие / В. А. Пионкевич, 2021. 84.
- 2. Москаленко В. В. Электрический привод: учебник / В. В. Москаленко, 2022. 364.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/
- 11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем
- 1. Свободно распространяемое программное обеспечение МАТЛАБ
- 12 Материально-техническое обеспечение дисциплины
- 1. B112