Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Структурное подразделение «Электропривода и электрического транспорта»

УТВЕРЖДЕНА:

на заседании кафедры Протокол №8 от <u>19 мая 2025</u> г.

Рабочая программа дисциплины

«ЭЛЕКТРООБОРУДОВАНИЕ И АВТОМАТИЗАЦИЯ ЛЕСОПЕРЕРАБАТЫВАЮЩИХ
ПРЕДПРИЯТИЙ»
Направление: 13.03.02 Электроэнергетика и электротехника
Электрооборудование и автоматизация в промышленности и энергетике
Квалификация: Бакалавр
Форма облаения, одная

Документ подписан простой электронной подписью

Составитель программы: Павлов Владимир

Евгеньевич

Дата подписания: 16.06.2025

Документ подписан простой электронной подписью

Утвердил и согласовал: Арсентьев Олег

Васильевич

Дата подписания: 19.06.2025

- 1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы
- 1.1 Дисциплина «Электрооборудование и автоматизация лесоперерабатывающих предприятий» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ПКС-2 Способность выполнять работы по	
техническому обслуживанию электрооборудования	ПКС-2.3
объектов промышленности и энергетики	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ПКС-2.3	Готов выполнять работы по техническому обслуживанию электрооборудования и систем автоматизации на лесоперерабатывающих предприятиях	Знать Знать - основы технологических процессов на лесоперерабатывающих предприятиях Уметь Уметь - выполнять работы по техническому обслуживанию электрооборудования и систем автоматизации на лесоперерабатывающих предприятиях Владеть Владеть - навыками выполнять работы по техническому обслуживанию электрооборудования и систем автоматизации на лесоперерабатывающих предприятий

2 Место дисциплины в структуре ООП

Изучение дисциплины «Электрооборудование и автоматизация лесоперерабатывающих предприятий» базируется на результатах освоения следующих дисциплин/практик: «Асинхронный электропривод», «Математическое моделирование в энергетике и электротехнике», «Силовая электроника», «Системы автоматического регулирования», «Системы автоматического управления», «Теоретические основы электротехники», «Электрические машины», «Электрический привод»

Дисциплина является предшествующей для дисциплин/практик: «Производственная практика: преддипломная практика»

3 Объем дисциплины

Объем дисциплины составляет – 3 ЗЕТ

Вид учебной работы	Трудоемкость в академических часах
	(Один академический час соответствует 45 минутам астрономического часа)

	Всего	Семестр № 8
Общая трудоемкость дисциплины	108	108
Аудиторные занятия, в том числе:	33	33
лекции	11	11
лабораторные работы	22	22
практические/семинарские занятия	0	0
Самостоятельная работа (в т.ч. курсовое проектирование)	75	75
Трудоемкость промежуточной аттестации	0	0
Вид промежуточной аттестации (итогового контроля по дисциплине)	Зачет	Зачет

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр № 8

			Видь	і контаі	ктной ра	аботы		6	D.C.	_
N₂	№ Наименование		Лекции		ЛР		П3(СЕМ)		PC	Форма
п/п	раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Общие сведения о лесоперерабатыва ющих предприятиях	1	2			5, 7, 8	8	1, 4	30	Тест
2	Электрооборудов ание и автоматизация процесса пиления	2	4	5, 6, 7	6	1, 2, 3, 4, 6	10	5	15	Тест
3	Электрооборудов ание деревообрабатыва ющих станков	3	2	1, 2, 8	10			3	15	Тест
4	Современные и перспективные технологии обработки древесины	4	3	3, 4, 9	6	9, 10	4	2	15	Тест
	Промежуточная аттестация									Зачет
	Всего		11		22		22		75	

4.2 Краткое содержание разделов и тем занятий

Семестр № 8

No	Тема	Краткое содержание	
1	Общие сведения о	Потенциальная экономически доступная ресурсная	
	лесоперерабатывающих	база для производства древесных материалов по	
	предприятиях	разным оценкам составляет от 250 до 350 млн. м3.	
		древесины из общей годовой доступной расчетной	
		лесосеки, оцениваемой в объеме от 400 до 600	

		млн.м3.В зависимости от размеров и формы
		поперечного сечения основные виды
		пиломатериалов производят в виде досок (ширина
		в два и более раз превышает толщину), брусков, у
		которых ширина меньше двойной толщины, и
		брусьев с шириной и толщиной более 100 мм.
		Брусья могут быть двух-, трех- или
		четырехкантыми по числу пропиленных
		сторон.Пиломатериалы классифицируют по
		породе древесины, сорту (количеству и качеству
		сортообразующих пороков), углу наклона волокон
		к кромке (радиальные и тангенциальные) наличию
		обзола (обрезные и необрезные), а также по
		размерам в соответствии с ГОСТ 24454 и 2695.
		Толщина хвойных пиломатериалов от 16 до 250
		мм, ширина от 75 до 275, длина от 1 до 6,5 м с
		установленной стандартами градацией. Анализируя
		различные виды пиломатериалов, необходимо
		определить не только возможные области и
		объемы потребления, но и экономическую
		целесообразность их выпуска, особенности
		пиломатериалов различных пород, возможные
	2	товары-заменители и виды попутной продукции.
2	Электрооборудование и	Угол резания δ , задний угол α и угол заострения β .
	автоматизация процесса	С увеличением угла резания δ при одноми том же
	пиления	значении заднего угла α удельная работа
		значительно возрастает. Если угол
		резанияизменяется от 45 до 90°, то удельная
		работа резания возрастает в 2 раза. Это
		объясняетсяувеличением работы, затрачиваемой
		на деформацию древесины передней гранью резца.
		Приувеличении заднего угла α удельная работа
		резания уменьшается, если $\alpha \to 0$, то
		резаниестановится почти невозможным, из-за
		большого контакта задней грани с древесиной.С
		увеличением заднего угла уменьшается угол
		заострения β, ф это приводит к
		быстромузатуплению режущего инструмента, и
		следовательно, к увеличению удельной работы
		резания.Степень затупления резца. Лезвие резца не
		представляет собой линии пересечения
		егопередней и задней граней, как это кажется. В
		действительности уже при заточке кончик
		резцанадламывается или зачищается образивным
		инструментом. При работе резец выкрашивается
		иистирается, т.е. затупляется. По мере затупления
		резца удельная работа резания повышается
		и,кроме того, уменьшается точность обработки.С
		увеличением поверхностей резания, т.е. с
		переходом открытого резания к
		закрытому,удельная работа резания увеличивается

		в связи с возникновением дополнительных сил
2	2	трения
3	Электрооборудование	Благодаря простоте устройства и управления
	деревообрабатывающих	электроприводы широко применяются
	станков	вдеревообрабатывающих станках. Они имею
		высокий КПД. Недостаток электропривода – относительно большая масса и значительные
		размеры. Кроме того, при их
		использованиизатруднено бесступенчатое изменение скоростей органов станков и частое
		реверсирование. Дляснижения частоты вращения
		валов электродвигателей во многих случаях
		(например, длямеханизмов подачи) приходится
		вводить в систему привода громоздкие передачи;
		во время пускаинерционность (способность
		сохранять состояние движения или покоя)
		электродвигателявызывает появление тока,
		значительно превышающего расчетный, в
		результате чего возможенперегрев двигателя. В
		случае этого для привода механизма подачи в
		станках с позиционнойобработкой вместо
		электродвигателя устанавливают
		гидродвигатели.Электропривод с редуктором
		применяют в том случае, когда требуется при
		относительнобольшой частоте вращения двигателя
		получить небольшую скорость движения
		подающих устройств.
4	Современные и	Одним из способов обработки древесных
	перспективные	материалов является деление древесины
	технологии обработки	лазернымлучом. При обработке древесины
	древесины	лазерный луч оказывает на древесину световое
		давление ивследствие образующегося
		температурного воздействия превращает все ее
		элементы в нагретыегазы.Газы, обладая большой
		кинетической энергией, расширяясь,
		дополнительно действуют надревесину, разрушают ее и вызывают горение. Интенсивность
		горения древесины снижается привоздействии на
		древесину лучом в инертном газе (углеродная
		среда).Динамическое действие расширяющихся
		газов локализуется при заполнении
		клетокдревесины водой или другим веществом,
		что сказывается на качестве
		обрабатываемойповерхности. Удельная работа
		деления древесины лазером значительно выше
		удельной работы резания.Поэтому
		технологическое качество лазерного луча
		1
		позволяет его использовать как
		позволяет его использовать как делительдревесины.Древесина хорошо режется

некоторых лиственных пород дерева возможно
обугливание краяпри резке, поэтому материал
перед обработкой стоит протестировать, чтобы
подобрать наиболеевыгодный режим. Также для
получения качественного изделия необходимо
учитывать размер инаправление древесных
волокон.

4.3 Перечень лабораторных работ

Семестр № 8

Nº	Наименование лабораторной работы	Кол-во академических часов
1	ОПРЕДЕЛЕНИЕ СТАТИЧЕСКИХ НАГРУЗОК ЛЕНТОЧНОГО КОНВЕЙЕРА	2
2	ИССЛЕДОВАНИЕ ЭЛЕКТРОПРИВОДА ЛЕНТОЧНОГО КОНВЕЙЕРА	4
3	ИССЛЕДОВАНИЕ ЧАСТОТНОРЕГУЛИРУЕМОГО ЭЛЕКТРОПРИВОДА АППАРАТА ВОЗДУШНОГО ОХЛАЖДЕНИЯ	2
4	ИССЛЕДОВАНИЕ ЧАСТОТНОРЕГУЛИРУЕМОГО ЭЛЕКТРОПРИВОДА ЦЕНТРОБЕЖНОГО НАСОСА	2
5	ИССЛЕДОВАНИЕ ЧАСТОТНОРЕГУЛИРУЕМОГО ЭЛЕКТРОПРИВОДА ЦЕНТРОБЕЖНОјГО НАСОСА МЕТОДОМ МОДЕЛИРОВАНИЯ	2
6	ИССЛЕДОВАНИЕ ТЕХНОЛОГИЧЕСКОЙ СХЕМЫ СТАБИЛИЗАЦИИ РАСХОДА ЖИДКОСТИ В ЗАВИСИМОСТИ ОТ УРОВНЯ ПОТРЕБЛЕНИЯ	2
7	УЧЕТ ВЛИЯНИЯ УПРУГОСТИ МЕХАНИЧЕСКИХ СВЯЗЕЙ НА ДИНАМИКУ МЕХАНИЗМОВ ЦИКЛИЧЕСКОГО ДЕЙСТВИЯ	2
8	ИССЛЕДОВАНИЕ КРАНОВОГО ЭЛЕКТРОПРИВОДА С ИМПУЛЬСНО КЛЮЧЕВЫМ УПРАВЛЕНИЕМ	4
9	Исследование процесса сушки древесины в сушильном шкафу	2

4.4 Перечень практических занятий

Семестр № 8

N₂	Темы практических (семинарских) занятий	Кол-во академических часов
1	Основные законы алгебры логики	2
2	Анализ релейно-контактных схем автоматики	2

	прямым применением законов алгебры логики		
3	Логические функции одной и двух переменных, таблица истинности, логические формулы	2	
4	Задание логических функций по методу Карно, запись выражений функций	2	
5	Определение статических нагрузок электроприводов лесоперерабатывающих 2 предприятий		
6	Расчет динамических нагрузок электрооборудования при пилении	2	
7	УЧЕТ ВЛИЯНИЯ УПРУГОСТИ МЕХАНИЧЕСКИХ СВЯЗЕЙ НА ДИНАМИКУ МЕХАНИЗМОВ ЦИКЛИЧЕСКОГО ДЕЙСТВИЯ	4	
8	Исследование электрооборудования ленточного конвейера	2	
9	ИССЛЕДОВАНИЕ ЧАСТОТНО- РЕГУЛИРУЕМОГО ЭЛЕКТРОПРИВОДА АППАРАТА ВОЗДУШНОГО ОХЛАЖДЕНИЯ	2	
10	Исследование процесса сушки древесины в сушильном шкафу	2	

4.5 Самостоятельная работа

Семестр № 8

N₂	Вид СРС	Кол-во академических часов
1	Выполнение тренировочных и обучающих тестов	15
2	Выполнение тренировочных и обучающих тестов в дистанционном режиме	15
3	Оформление отчетов по лабораторным и практическим работам	15
4	Подготовка к практическим занятиям	15
5	Подготовка к сдаче и защите отчетов	15

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: В ходе проведения лекций, практических и лабораторных работ используются следующие интерактивные методы обучения, указанные в таблице. Таблица - Применяемые образовательные технологии Технологии Виды занятий Лекции Лаб. раб. Практ./ Сем. зан. СРС Курсовой проект Виртуальное моделирование

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по лабораторным работам:

Автоматизированный электропривод типовых производственных механизмов и технологических комплексов [Электронный ресурс] : методические указания для

аудиторских занятий (лабораторных работ) по специальности 140604.65 - Электропривод и автоматика промышленных установок и технологических комплексов / Иркут. гос. техн. ун-т, 2008. - 64 c. http://elib.istu.edu/viewer/view.php?file=/files/er-4797.pdf

5.1.2 Методические указания для обучающихся по самостоятельной работе:

Автоматизированный электропривод типовых производственных механизмов и технологических комплексов [Электронный ресурс] : методические указания по самостоятельной работе (практические занятия): направление 13.03.02 "Электроэнергетика и электротехника": профиль "Электропривод и автоматика": квалификация бакалавр / Иркут. нац. исслед. техн. ун-т, Ин-т энергетики, Каф. электропривода и электр. трансп., 2018. - 16. http://elib.istu.edu/viewer/view.php?file=/files3/er-17339.pdf

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 семестр 8 | Тест

Описание процедуры.

Зачёт проводится в виде тестирования

Критерии оценивания.

: Зачтено: полный и правильно оформленный отчет о практической работе, правильные ответы на не менее чем 60% вопросов для контроля.

Не зачтено: неполный и/или неправильно оформленный отчет о практической работе, правильные ответы на менее чем 60% вопросов для контроля

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
ПКС-2.3	ПКС-2.3 Готов выполнять работы по	Устное
	техническому обслуживанию	собеседование по
	электрооборудования и систем	теоретическим
	автоматизации на	вопросам и/или
	лесоперерабатывающих предприятиях	тестирование.
		Выполнение
		практического
		задания.

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 8, Типовые оценочные средства для проведения зачета по дисциплине

6.2.2.1.1 Описание процедуры

Зачет проводится в форме тестирования.

Пример задания:

Тема 2. Механическая часть силового канала электропривода. Уравнения механического движения . Приведение элементов механической части

Задача 1. ОПРЕДЕЛЕНИЕ СТАТИЧЕСКИХ НАГРУЗОК НА ЛЕКТРОПРИВОД ГРУЗОПОДЪЕМНОЙ ТЕЛЕЖКИ

Описание процедуры:

Проверка отчета о решении задачи.

Устный опрос по теоретическому материалу работы.

Кинематическая схема.

Анализ полученных характеристик

Вопросы для контроля:

- 1. Как определить режим работы эпектропривода?
- 2. Как противовес влияет на работу электропривода?
- 3. Как правильно выбрать вес противовеса?
- 4. Для чего нужен редуктор?
- 5. От чего зависит момент нагрузки на валу двигателя?
- 6. Как определить момент инерции на валу двигателя?

Тема 3. Электромеханические свойства двигателя постоянного тока независимого возбуждения

Задача 2. РАСЧЕТ ХАРАКТЕРИСТИК ЭЛЕКТРОПРИВОДА ПОСТОЯННОГО ТОКА Описание процедуры:

Проверка отчета о решении задачи.

Устный опрос по теоретическому материалу работы.

Уравнения ДПТНВ в двигательном и тормозных режимах.

Анализ полученных характеристик

Вопросы для контроля:

- 1. Как построить естественную электромеханическую (механическую характеристику ДПТНВ?
- 2. Назначение пускового реостата?
- 3. Порядок расчёта пускового реостата.
- 4. Как рассчитать время работы реостата на каждой ступени?
- 5. Порядок построения диаграммы пуска ДПТНВ?
- 6. Как осуществить работу ДПТНВ с половинной скоростью?
- 7. Как осуществить тормозные режимы ДПТНВ?

Тема 5. Электромеханические свойства асинхронного двигателя

Задача З.. РАСЧЕТ ХАРАКТЕРИСТИК ЭЛЕКТРОПРИВОДА ПЕРЕМЕННОГО ТОКА Описание процедуры:

Проверка отчета о решении задачи.

Устный опрос по теоретическому материалу работы.

Уравнения АД в двигательном и тормозных режимах.

Анализ полученных характеристик

Вопросы для контроля:

1. Как построить естественную электромеханическую (механическую) характеристику АД?

- 2. Назначение пускового реостата?
- 3. Порядок расчёта пускового реостата.
- 4. Как рассчитать время работы реостата на каждой ступени?
- 5. Порядок построения диаграммы пуска АД?
- 6. Как осуществить работу АД с фазным ротором с половинной скоростью?
- 7. Как осуществить тормозные режимы АД?

Критерии оценки:

Зачтено: полный и правильно оформленный отчет о практической работе, правильные ответы на не менее чем 60% вопросов для контроля.

Не зачтено: неполный и/или неправильно оформленный отчет о лабораторной работе, правильные ответы на менее чем 60% вопросов для контроля.

6.2.2.1.2 Критерии оценивания

Зачтено	Не зачтено
Готов выполнять работы по	Не готов выполнять работы по
техническому обслуживанию	техническому обслуживанию
электрооборудования и систем	электрооборудования и систем
автоматизации на	автоматизации на
лесоперерабатывающих	лесоперерабатывающих
предприятиях	предприятиях

7 Основная учебная литература

- 1. Белов М. П. Автоматизированный электропривод типовых производственных механизмов и технологических комплексов: учеб. для вузов по специальности "Электропривод и автоматика пром. установок и технол. комплексов" ... / М. П. Белов, В. А. Новиков, Л. Н. Рассудов, 2004. 574.
- 2. Автоматизированный электропривод типовых производственных механизмов и технологических комплексов [Электронный ресурс] : методические указания для аудиторных занятий (практические занятия): направление 13.03.02 "Электроэнергетика и электротехника": профиль "Электропривод и автоматика": квалификация бакалавр / Иркут. нац. исслед. техн. ун-т, Ин-т энергетики, Каф. электропривода и электр. трансп., 2018. 23.
- 3. Автоматизированный электропривод типовых производственных механизмов и технологических комплексов [Электронный ресурс] : методические указания для аудиторных занятий (лабораторные работы): направление 13.03.02 "Электроэнергетика и электротехника": профиль "Электропривод и автоматика": квалификация бакалавр / Иркут. нац. исслед. техн. ун-т, Ин-т энергетики, Каф. электропривода и электр. трансп., 2018. 54.

8 Дополнительная учебная литература и справочная

1. Автоматизированный электропривод типовых производственных механизмов и технологических комплексов [Электронный ресурс] : методические указания по самостоятельной работе (практические занятия): направление 13.03.02 "Электроэнергетика и электротехника": профиль "Электропривод и автоматика": квалификация бакалавр / Иркут. нац. исслед. техн. ун-т, Ин-т энергетики, Каф. электропривода и электр. трансп., 2018. - 16.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/
- 11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем
- 1. Свободно распространяемое программное обеспечение МАТЛАБ
- 12 Материально-техническое обеспечение дисциплины
- 1. B112