Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ **УНИВЕРСИТЕТ»**

Структурное подразделение «Институт информационных технологий и анализа данных»

УТВЕРЖДЕНА:

на заседании Совета института ИТиАД им. Е.И.Попова Протокол №8 от 24 февраля 2025 г.

Рабочая программа дисциплины

«ТЕОРИЯ АВТОМАТОВ»						
Направление: 09.03.01 Информатика и вычислительная техника						
паправление. 05.05.01 информатика и вычислительная техника						
Вычислительные машины, комплексы, системы и сети						
Квалификация: Бакалавр						
квалификация. вакалавр						
Форма обучения: очная						

Документ подписан простой электронной подписью Составитель программы: Оглоблин Владимир Александрович Дата подписания: 19.06.2025 Документ подписан простой электронной подписью Утвердил: Говорков Алексей

Сергеевич

Дата подписания: 20.06.2025

Документ подписан простой электронной подписью Согласовал: Аношко Алексей

Федорович

Дата подписания: 20.06.2025

1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

1.1 Дисциплина «Теория автоматов» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ПКС-2 Способность реализовать проекты по	
созданию и модернизации ИТ-инфраструктуры	ПКС-2.3
предприятия	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ПКС-2.3	Способность обосновывать технические условия и задания на проектирование аппаратного, программного и информационного обеспечения автоматизированных систем	Знать основные понятия теории конечных автоматов Уметь строить конечные модели для решения задач распознавания и доказывать неразрешимость проблем для различных вычислительных моделей Владеть навыками построения конечных моделей для решения задач распознавания и умения доказывать неразрешимость проблем для различных вычислительных моделей

2 Место дисциплины в структуре ООП

Изучение дисциплины «Теория автоматов» базируется на результатах освоения следующих дисциплин/практик: «Дискретная математика», «Основы цифровой электроники»

Дисциплина является предшествующей для дисциплин/практик: «Трансляторы и программные системы»

3 Объем дисциплины

Объем дисциплины составляет – 4 ЗЕТ

	Трудоемкость в академических часах			
Вид учебной работы	(Один академический час со			
Zing y resilent pussible	минутам астрономическ	ого часа)		
	Всего	Семестр № 3		
Общая трудоемкость дисциплины	144	144		
Аудиторные занятия, в том числе:	64	64		
лекции	32	32		
лабораторные работы	32	32		
практические/семинарские занятия	0	0		
Самостоятельная работа (в т.ч.	44	44		
курсовое проектирование)	44	44		

Трудоемкость промежуточной аттестации	36	36
Вид промежуточной аттестации (итогового контроля по дисциплине)	Экзамен, Курсовая работа	Экзамен, Курсовая работа

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр $N_{\mathfrak{D}}$ <u>3</u>

	TT	П анменерание		і конта	ктной ра	боты			'DC	Φ
N_{Ω}	Наименование	Лен	щии	J	IP	П3(CEM)		PC	Форма текущего
п/п	раздела и темы дисциплины	N₂	Кол. Час.	N₂	Кол. Час.	Nº	Кол. Час.	No	Кол. Час.	контроля
1	2	3	4	5	6	7	8	9	10	11
1	Основные понятия и определения	1	2							Устный опрос
2	Логические и физические основы теории автоматов. Логические выражения	2	4	1	4			2	4	Устный опрос
3	Минимизация логических функций. СКНФ и СДНФ. Карты Карно	3	6	2	4					Устный опрос
4	Анализ и синтез логических схем на микросхемах малой и средней степени интеграции	4	4	3	4					Устный опрос
5	Синтез цифровых автоматов без памяти (комбинационные автоматы)	5	2	4	6					Устный опрос
6	Элементарный автоматы с памятью	6	4	5	4					Устный опрос
7	Типовые автоматы с памятью	7	4	6	2			1	28	Проект
8	Структурный синтез автоматов. Синтез автомата Мура	8	2	7	4					Устный опрос
9	Граф-схемы и синтез автоматов. Синтез автомата Мура. Принцип микропрограммно го автомата	9	4	8	4			3	12	Устный опрос
	Промежуточная								36	Экзамен,

аттестация					Курсовая работа
Всего	32	32		80	

4.2 Краткое содержание разделов и тем занятий

Семестр № 3

No	Тема	Краткое содержание
1	Основные понятия и	Даются основные термины и определения
	определения	дисциплины. Рассматривается место дисциплины в
	_	спектре получаемых знаний и умений. Приводятся
		примеры
2	Логические и	Даются основные логические выражения и
	физические основы	производные от них (прямая и инверсная логика
	теории автоматов.	высказываний). Приводится описание физических
	Логические выражения	элементов цепей, реализующих логику
		высказывания. Логические элементы
3	Минимизация	Приводится описание аналитических методов
	логических функций.	минимизации логических функций. Даются
	СКНФ и СДНФ. Карты	определения СКНФ и СДНФ. Приводится
	Карно	методика свертывания на примере карт Карно
4	Анализ и синтез	Приводятся описание и применение построения
	логических схем на	комбинационных схем на примере: шифраторов,
	микросхемах малой и	дешифраторов, компараторов, схем контроля
	средней степени	четности
	интеграции	
5	Синтез цифровых	Приводятся примеры построения комбинационных
	автоматов без памяти	автоматов среди номенклатуры решений
	(комбинационные	
	автоматы)	
6	Элементарный	Приводится описание последовательностных схем
	автоматы с памятью	RS,D,JK,T триггеры
7	Типовые автоматы с	Регистры - назначение, устройство и виды
	памятью	(параллельные, последовательные, кольцевые,
		комбинированные). Счетчики - назначение,
		устройство и виды (инкрементные, декрементные,
		реверсивные).
8	Структурный синтез	Построение автомата через функциональные
	автоматов. Синтез	схемы. Пример синтеза на базе автомата Мили.
	автомата Мура	
9	Граф-схемы и синтез	Описание граф-схем. Принцип работы и описание
	автоматов. Синтез	микропрограммных автоматов. Построение
	автомата Мура.	автомата Мура.
	Принцип	
	микропрограммного	
	автомата	

4.3 Перечень лабораторных работ

Семестр № <u>3</u>

Nº	Наименование лабораторной работы	Кол-во академических часов
1	Система прямой логики обратной и производной логики	4
2	Минимизация заданных логических выражений различными методами	4
3	Основы работы в среде моделирования Logisim	4
4	Моделирование комбинационного автомата	6
5	Синтез элементарных автоматов с памятью в среде Logisim	4
6	Синтез кольцевого регистра - генератора случайного числа	2
7	Синтез управляющего автомата с жесткой логикой	4
8	Синтез управляющего автомата с микропрограммной логикой	4

4.4 Перечень практических занятий

Практических занятий не предусмотрено

4.5 Самостоятельная работа

Семестр № 3

N₂	Вид СРС	Кол-во академических часов
1	Написание курсового проекта (работы)	28
2	Оформление отчетов по лабораторным и практическим работам	4
3	Подготовка к практическим занятиям (лабораторным работам)	12

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: Дискуссия

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по курсовому проектированию/работе:

Согласно заданию спроектировать управляющий цифровой автомат (ЦА) по заданной содержательной граф-схеме алгоритма. Проанализировать различные варианты построения комбинационной схемы ЦА и выбрать наиболее оптимальный с точки зрения аппаратурных затрат.

Для данного варианта построить функциональную схему ЦА. Дать оценку конструктивной сложности ЦА.

Представить рекомендации по выбору элементной базы для реализации цифрового автомата.

Исходными данными являются:

1) содержательная граф-схема алгоритма функционирования управляющего автомата;

- 2) тип элементов памяти и логических элементов;
- 3) требования к схеме автомата по стоимости и быстродействию.

Результаты курсовой работы должны быть представлены в форме пояснительной записки и графической части, содержащей функциональную схему управляющего автомата.

Курсовая работа должна содержать следующие разделы:

Содержание

- 1 Постановка задачи
- 2 Синтез управляющего автомата Мура (Мили)
- 2.1 Содержательная граф-схема алгоритма цифрового автомата
- 2.2 Кодированная и отмеченная граф-схема алгоритма цифрового автомата
- 2.3 Построение графа-переходов цифрового автомата
- 2.4 Вычисление количества элементов памяти для цифрового автомата
- 2.5 Кодирование состояний цифрового автомата Мура (Мили)
- 2.6 Построение структурной таблицы цифрового автомата
- 2.7 Формирование и минимизация функций возбуждения элементов памяти и функций выходов
- 2.8 Составление таблицы покрытия конъюнкциями системы логических уравнений
- 2.9 Определение элементной базы и оценка конструктивной сложности и быстродействия схемы

Список использованных источников

Заключение

Приложение А Функциональная схема цифрового автомата Мура (Мили)

Приложение Б Схема цифрового автомата смоделированная в среде Logisim

5.1.2 Методические указания для обучающихся по лабораторным работам:

Цель работы:

Повторение и закрепление полученных в ходе освоения курса практических и теоретических знаний и навыков.

5.1.3 Методические указания для обучающихся по самостоятельной работе:

Реализовать приложение по описанной в лабораторной работе 1 инструкции для функций «Исключающее ИЛИ», штрих Шеффера, стрелка Пирса.

- 1 Создаваемому приложению задать имя проекта как Logic Proj1 Фамилия.
- 2 Создаваемой форме задать свойство Text как Lab1_1 Фамилия.
- 3 Использовать изображение из архива к лабораторной работе (рисунок 1).

Рисунок 1

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 семестр 3 | Проект

Описание процедуры.

Выполнение моделирования устройства в среде Logisim.

Пример задания: Спроектировать кодовый замок, работающий при вводе двух комбинаций на входах А,В,С: 011 или 100 (по вариантам реализация комбинационной

Критерии оценивания.

«отлично» - Моделируемая схема работает без ошибок. Логическая функция составлена верно.

«хорошо» - Моделируемая схема работает верно, логическая составлена без минимизации. «удовлетворительно» - Имеются ошибки в схеме.

6.1.2 семестр 3 | Устный опрос

Описание процедуры.

Для допуска к экзамену по дисциплине студенту необходимо выполнить все задания лабораторного практикума, подготовить и защитить по ним отчеты.

Критерии оценивания.

Оценка "неудовлетворительно"- обучающийся не полностью ответил на вопросы по отчету лабораторного практикума, при этом проявил недостаточный уровень основ знаний по дисциплине

Оценка "удовлетворительно" - обучающийся ответил на вопросы по отчету лабораторного практикума с существенными неточностями.

Оценка "хорошо" - обучающийся ответил на вопросы по отчету лабораторного практикума с небольшими неточностями.

Оценка "отлично" - обучающийся полностью и правильно ответил на вопросы по отчету лабораторного практикума.

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
ПКС-2.3	Способность обосновывать	Устный опрос,
	технические условия и задания на	проект
	проектирование аппаратного,	
	программного и информационного	
	обеспечения автоматизированных	
	систем	

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 3, Типовые оценочные средства для проведения экзамена по дисциплине

6.2.2.1.1 Описание процедуры

Ответить на вопросы:

- 1. В чём состоит принцип микропрограммного управления
- 2. Пояснить понятия команды, микрокоманды, операции, микрооперации.
- 3. После того, как на все входы неизвестного многовходового логического элемента был подан уровень логической единицы, на его выходе также появился уровень логической единицы. Определите тип логического элемента.
- "И";
- "ИЛИ";
- "HE":
- "И-НЕ";
- 4. Если на схему симметричного триггера подать напряжение питания, то произойдет следующее:
- один из транзисторов начнет приоткрываться;
- другой из транзисторов начнет призакрываться;
- оба транзистора начнут приоткрываться;
- оба транзистора начнут призакрываться.
- 5. Разработать функциональную схему трёхразрядного последовательного регистра на Ттриггерах и логических элементах базиса Буля.
- 6. Как из двух дешифраторов 2*4 сделать один дешифратор 3*8?
- 7. Может ли у дешифратора, имеющего 4 входа, быть:
- 4 выхода;
- 6 выходов;
- 8 выходов;
- 12 выходов;
- 15 выходов;
- 16 выходов;
- 18 выходов?
- 8. К каким типам автоматов (Мили или Мура) относятся:
- суммирующие счётчики;
- вычитающие счётчики;
- реверсивные счётчики;
- последовательные регистры;
- параллельные регистры?
- 9. Разработать функциональную схему суммирующего четырехразрядного двоично-десятичного счётчика.

Пример задания:

- 1. В чём состоит принцип микропрограммного управления
- 2. Разработать функциональную схему суммирующего четырехразрядного двоично-десятичного счётчика.

6.2.2.1.2 Критерии оценивания

Отлично	Хорошо	Удовлетворительн о	Неудовлетворительно
Правильно дан	Правильно дан	Правильно дан ответ	Неправильно дан ответ
ответ на два	ответ на один	только на один	на два вопроса в
вопроса в билете.	вопрос в билете.	вопрос в билете	билете
	Во втором вопросе		

_	
имеются ошиоки	

6.2.2.2 Семестр 3, Типовые оценочные средства для курсовой работы/курсового проектирования по дисциплине

6.2.2.2.1 Описание процедуры

Оценка за курсовую работу складываются из результатов выполнения индивидуального задания, качественно оформленной пояснительной записки, демонстрации работы цифрового автомата в среде Logisim.

Пример задания:

Спроектировать кодовый замок, работающий при вводе двух комбинаций на входах A,B,C: 011 или 100 (по вариантам реализация комбинационной логике И- HE/ИЛИ-HE).

6.2.2.2 Критерии оценивания

Отлично	Хорошо	Удовлетворительн о	Неудовлетворительно
Пояснительная	Пояснительная	Пояснительная	Пояснительная записка
записка правильно	записка правильно	записка правильно	правильно оформлена,
оформлена,	оформлена,	оформлена, согласно	с серьёзными
согласно	согласно	методических	ошибками по
методических	методических	указаний.	содержанию.
указаний.	указаний. В граф-	Присутствуют граф-	Отсутствуют граф-
Присутствуют	схемах, таблицах	схемы, таблицы	схемы, таблицы
граф-схемы,	работы	работы,	работы,
таблицы работы,	присутствуют	функциональная	функциональная
функциональная	ошибки,	схема. Проект в	схема. Проект в среде
схема. Проект в	функциональная	среде Logisim не	Logisim
среде Logisim	схема. Проект в	работоспособен или	неработоспособен.
полностью	среде Logisim	работает с	
работоспособен.	полностью	ошибками	
	работоспособен		

7 Основная учебная литература

- 1. Кирий В. Г. Теория автоматов. Задачник : учеб. пособие по специальности 230101(220100) "Вычисл. машины, комплексы, системы и сети" / В. Г. Кирий, 2007. 143.
- 2. Кирий В. Г. Теория автоматов : Задачи. Примеры. Задания на курсовые работы / В. Г. Кирий, 2002. 50.
- 3. Теория автоматов: методические указания по выполнению лабораторных и курсовых работ (для студентов заочной формы обучения) по специальности 230101 "Вычислительные машины, комплексы, системы и сети" направления "Информатика и вычислительная техника" / Иркут. гос. техн. ун-т, 2011. 26.

8 Дополнительная учебная литература и справочная

1. Карпов Юрий Глебович. Теория автоматов : [По направлению подгот. бакалавров "Информатика и вычисл. техника" и по специальности "Вычисл. машины, комплексы,

- системы и сети" напрвления подгот. дипломир. специалистов "Информатика и вычисл. техника"] / Ю. Г. Карпов, 2002. 206.
- 2. Бродский Герман Михайлович. Алгебраическая теория автоматов : учеб. пособие / Герман Михайлович Бродский; Ярославский гос. ун-т, 1988. 68.
- 3. Кудрявцев В. Б. Теория автоматов : учебник для бакалавриата и магистратуры вузов по естественнонаучным и инженерно-техническим направлениям / В. Б. Кудрявцев, С. В. Алешин, А. С. Подколзин, 2017. 319.
- 4. Певзнер. Теоретические основы кибернетики : учебное пособие. Разд. 2 : Теория графов. Теория автоматов, 1977. 88.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/
- 11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем
- 1. Microsoft Windows Seven Professional [1x500] RUS (проведен апгрейд с Microsoft Windows Seven Starter [1x500])_поставка 2010
- 2. Microsoft Office Standard 2010_RUS_ поставка 2010 от ЗАО "СофтЛайн Трейд"

12 Материально-техническое обеспечение дисциплины

- 1. Проектор OLDI PJ 11
- 2. Компьютер" Intel Core i3/DDR 4GB/HDD 1 Tb/GF 1Gb/LCD23/ИБП"