Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Структурное подразделение «Электропривода и электрического транспорта»

УТВЕРЖДЕНА:

на заседании кафедры Протокол №8 от <u>19 мая 2025</u> г.

Рабочая программа дисциплины

«ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПРЕДПРИЯТИЙ НЕФТЕГАЗОВОГО КОМПЛЕКСА»
Направление: 13.04.02 Электроэнергетика и электротехника
Электрооборудование установок для добычи и транспортировки нефти и газа
Квалификация: Магистр
Форма обучения: очная

Документ подписан простой электронной подписью Составитель программы: Коновалов Юрий Васильевич Дата подписания: 06.06.2025

Документ подписан простой электронной подписью Утвердил: Арсентьев Олег

Васильевич

Дата подписания: 19.06.2025

Документ подписан простой электронной подписью Согласовал: Дунаев Михаил

Павлович

Дата подписания: 11.06.2025

- 1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы
- 1.1 Дисциплина «Электрические машины предприятий нефтегазового комплекса» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ПК-4 Способен организовывать ТОиР, ДО	ПК-4.1
оборудования нефтегазового комплекса	11K-4.1

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ПК-4.1	Реализует технические и организационные мероприятия по ремонту и диагностическому обслуживанию электрических машин, используемых на предприятиях нефтегазового комплекса	Знать основные технические и организационные мероприятия по ремонту и диагностическому обслуживанию электрических машин Уметь практически применять полученные знания по обслуживанию электрических машин, используемых на предприятиях нефтегазового комплекса Владеть навыком организации мероприятий по ремонту и диагностическому обслуживанию электрических машин, используемых на предприятиях нефтегазового комплекса

2 Место дисциплины в структуре ООП

Изучение дисциплины «Электрические машины предприятий нефтегазового комплекса» базируется на результатах освоения следующих дисциплин/практик: Нет

Дисциплина является предшествующей для дисциплин/практик: «Моделирование электроприводов нефтегазовых установок», «Энергосберегающий электропривод нефтегазовых установок», «Методы и средства энергосбережения в буровых и транспортных установках»

3 Объем дисциплины

Объем дисциплины составляет – 3 ЗЕТ

	Трудоемкость в академических часах			
Deer vershere i nahem v	(Один академический час соответствует 45			
Вид учебной работы	минутам астрономического часа)			
	Всего	Семестр № 1		
Общая трудоемкость дисциплины	108	108		
Аудиторные занятия, в том числе:	52	52		

лекции	13	13
лабораторные работы	26	26
практические/семинарские занятия	13	13
Самостоятельная работа (в т.ч. курсовое проектирование)	56	56
Трудоемкость промежуточной аттестации	0	0
Вид промежуточной аттестации (итогового контроля по дисциплине)	Зачет	Зачет

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр $N_{\mathfrak{D}}$ <u>1</u>

			Видь	і конта	ктной ра	боты		CPC		
N₂	№ Наименование		кции		IP		CEM)	J C.	PC	Форма
п/п Р	раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Основные элементы конструкции и способы возбуждения машин постоянного тока предприятий нефтегазового комплекса	1	1			1, 4	6	1, 2, 3, 4	7	Собеседов ание
2	Реакция якоря и коммутация в машинах постоянного тока	2	1					4	1	Собеседов ание
3	Основные характеристики электрических машин постоянного тока	3	2	1, 2, 3, 4	10			1, 2, 3, 4	7	Отчет по лаборатор ной работе
4	Основные элементы конструкции и принцип действия асинхронных машин	4	1			2	2	1, 2,	5	Собеседов ание
5	Работа асинхронной машины при неподвижном и вращающемся роторе	5	1					1, 2, 3, 4	7	Собеседов ание
6	Основные характеристики асинхронных машин предприятий	6	2	5, 6, 7	8	3	4	1, 2, 3, 4	13	Отчет по лаборатор ной работе

	нефтегазового									
	комплекса									
	Основные									
7	элементы конструкции, принцип действия синхронных машин	7	1					4	1	Собеседов ание
8	Характеристики синхронных генераторов и синхронных двигателей, применяемых на предприятиях нефтегазового комплекса	8	2	8, 9	4			1, 2, 3, 4	7	Отчет по лаборатор ной работе
9	Использование синхронных двигателей и синхронных компенсаторов для оптимизации режимов электроснабжени я предприятий нефтегазового комплекса	9	2	10	4	5	1	1, 2, 3, 4	8	Собеседов ание
	Промежуточная аттестация									Зачет
	Всего		13		26		13		56	

4.2 Краткое содержание разделов и тем занятий

Семестр $N_{\mathfrak{Q}}$ <u>1</u>

No	Тема	Краткое содержание
1	Основные элементы	Изучение основных элементов конструкции
	конструкции и способы	электрических машин постоянного тока,
	возбуждения машин	Классификация электрических машин постоянного
	постоянного тока	тока по способу возбуждения.
	предприятий	
	нефтегазового	
	комплекса	
2	Реакция якоря и	Виды реакции якоря при различных режимах
	коммутация в машинах	работы машин постоянного тока. Коммутация в
	постоянного тока	машинах постоянного тока, способы её улучшения
3	Основные	Работа машины постоянного тока в режиме
	характеристики	генератора и двигателя. Основные
	электрических машин	эксплуатационные характеристики генераторов
	постоянного тока	постоянного тока. Механические и рабочие
		характеристики, способы пуска и регулирования
		частоты вращения двигателей постоянного тока.
4	Основные элементы	Изучение основных элементов конструкции
	конструкции и принцип	асинхронных машин, их назначение. Принцип
	действия асинхронных	действия асинхронных машин в различных
	машин	режимах

5	Работа асинхронной	Работа асинхронной машины при неподвижном и
	машины при	вращающемся роторе. Схемы замещения этих
	неподвижном и	режимов. Параметры схем замещения
	вращающемся роторе	
6	Основные	Работа асинхронной машины в режиме генератора
	характеристики	и двигателя. Основные эксплуатационные
	асинхронных машин	характеристики асинхронных генераторов.
	предприятий	Механические и рабочие характеристики, способы
	нефтегазового	пуска и регулирования частоты вращения
	комплекса	асинхронных двигателей.
7	Основные элементы	Основные элементы конструкции синхронных
	конструкции, принцип	машин. Режимы работы синхронных машин.
	действия синхронных	Принцип действия синхронного двигателя,
	машин	генератора и компенсатора
8	Характеристики	Характеристики синхронных генераторов и
	синхронных	синхронных двигателей, применяемых на
	генераторов и	предприятиях нефтегазового комплекса . Схемы и
	синхронных	способы снятия этих характеристик.
	двигателей,	
	применяемых на	
	предприятиях	
	нефтегазового	
	комплекса	
9	Использование	Рабочие характеристики синхронных двигателей и
	синхронных двигателей	синхронных компенсаторов. Достоинства и
	и синхронных	недостатки. Использование синхронных машин
	компенсаторов для	для компенсации реактивной мощности и
	оптимизации режимов	оптимизации режимов электроснабжения
	электроснабжения	предприятий нефтегазового комплекса
	предприятий	
	нефтегазового	
	комплекса	

4.3 Перечень лабораторных работ

Семестр № 1

Nº	Наименование лабораторной работы	Кол-во академических часов
1	Исследование генератора постоянного тока независимого возбуждения	2
2	Исследование генератора постоянного тока параллельного возбуждения	2
3	Исследование двигателей постоянного тока (ДПТ) последовательного возбуждения	4
4	Исследование двигателя постоянного тока (ДПТ) параллельного возбуждения	2
5	Исследование характеристик асинхронного двигателя с короткозамкнутым ротором	2
6	Исследование характеристик асинхронного двигателя с фазным ротором	2

7	Регулирование частоты вращения асинхронного двигателя с короткозамкнутым ротором	4
8	Исследование характеристик синхронного генератора	2
9	Исследование синхронного трехфазного двигателя	2
10	Исследование синхронной машины, работающей параллельно с сетью	4

4.4 Перечень практических занятий

Семестр № 1

Nº	Темы практических (семинарских) занятий	Кол-во академических часов
1	Расчет параметров и построение схем обмоток машин постоянного тока	2
2	Расчет параметров и построение схем обмоток машин переменного тока	2
3	Расчет и построение рабочих и механических характеристик асинхронных двигателей	4
4	Расчет пусковых и регулировочных режимов асинхронных двигателей	4
5	Построение векторных диаграмм, характеризующих режим работы синхронной машины	1

4.5 Самостоятельная работа

Семестр № 1

N₂	Вид СРС	Кол-во академических часов
1	Оформление отчетов по лабораторным и практическим работам	16
2	Подготовка к практическим занятиям (лабораторным работам)	16
3	Подготовка к сдаче и защите отчетов	14
4	Проработка разделов теоретического материала	10

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: В ходе проведения лекций, практических и лабораторных работ используются следующие интерактивные методы обучения: Семинары в диалоговом режиме, дискуссии

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по практическим занятиям

Коновалов Ю. В. Электрические машины и электропривод: практикум / Ю. В. Коновалов, 2018. - 66 с. http://elib.istu.edu/viewer/view.php?file=/files/er-13871.pdf

5.1.2 Методические указания для обучающихся по лабораторным работам:

- 1. Электрические машины. Исследование двигателя постоянного тока параллельного возбуждения: метод. указания к лаб. работе для специальности 21.05, 18.03, 18.07, 10.01, 10.04 / сост. Л. И. Башкирова, Г. Г. Константинов, 1995. 11 с.
- 2. Электротехника и электроника. Электрические машины постоянного тока: методические указания по выполнению лабораторных работ для неэлектротехнических специальностей ИрГТУ / Иркут. гос. техн. ун-т, 2008. 31 с. http://elib.istu.edu/viewer/view.php?file=/files/er- 13871.pdf
- 3. Коновалов Ю. В. Электрические машины и электропривод: учебное пособие / Ю. В. Коновалов, О. В. Арсентьев, 2018. 92 с. http://elib.istu.edu/viewer/view.php?file=/files/er-13871.pdf
- 4. Коновалов Ю. В. Электрические машины. Раздел "Асинхронные машины" лабораторный практикум / Ю. В. Коновалов, 2018. 63 с. http://elib.istu.edu/viewer/view.php?file=/files/er- 13871.pdf

5.1.3 Методические указания для обучающихся по самостоятельной работе:

Самостоятельная подготовка к лабораторным работам и практическим занятиям включает в себя проработку соответствующих теме разделов теоретического курса, и оформление протокола в соответствии с требованиями, изложенными в методических указаниях. Самостоятельная проработка отдельных разделов теоретического курса включает в себя ознакомление с соответствующим разделом по источникам, приведенным в списке основной и дополнительной литературы и из источников Интернета. Самостоятельная подготовка к сдаче и защите отчетов по лабораторным работам и практическим занятиям включает в себя проработку соответствующих теме разделов теоретического курса, и оформление отчета в соответствии с требованиями, изложенными в методических указаниях, а также в проработке вопросов приведенных в перечне контрольных вопросов в методических указаниях.

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 семестр 1 | Собеседование

Описание процедуры.

Собеседование по темам 1, 2, 4, 5, 7.

- Тема 1. Основные элементы конструкции и способы возбуждения машин постоянного тока предприятий нефтегазового комплекса.
- Тема 2. Реакция якоря и коммутация в машинах постоянного тока.
- Тема 4. Основные элементы конструкции и принцип действия асинхронных машин.
- Тема 5. Работа асинхронной машины при неподвижном и вращающемся роторе.
- Tema 7. Основные элементы конструкции, принцип действия синхронных машин. Вопросы для контроля:
- Основные законы электротехники
- Принцип действия машины постоянного тока.
- Обратимость машины постоянного тока. Работа в режиме генератора и в режиме двигателя.
- Основные элементы конструкции машины постоянного тока.
- Обмотки машин постоянного тока. Типы обмоток якоря.

Критерии оценивания.

Зачтено: правильные ответы на не менее чем 60% вопросов для контроля. Не зачтено: правильные ответы на менее чем 60% вопросов для контроля.

6.1.2 семестр 1 | Отчет по лабораторной работе

Описание процедуры.

Тема 3. Основные характеристики электрических машин постоянного тока. Лабораторная работа № 1. Исследование генератора постоянного тока независимого возбуждения.

Описание процедуры:

- Проверка отчета о лабораторной работе.
- Устный опрос по теоретическому материалу работы.
- Ознакомление с конструкцией и принципом действия генераторов постоянного тока (ГПТ) независимого возбуждения и анализ экспериментальных характеристик. Вопросы для контроля:
- Привести классификацию генераторов постоянного тока по способу возбуждения.
- Рассказать конструкцию генератора постоянного тока независимого возбуждения.
- Объяснить принцип действия генератора постоянного тока независимого возбуждения как преобразователя механической мощности в электрическую.
- Какими достоинствами и какими недостатками обладает ГПТ независимого возбуждения по сравнению с ГПТ параллельного возбуждения?
- По каким причинам напряжение на зажимах генератора постоянного тока независимого возбуждения уменьшается при увеличении нагрузки?

Лабораторная работа № 2. Исследование генератора постоянного тока параллельного возбуждения.

Описание процедуры:

- Проверка отчета о лабораторной работе.
- Устный опрос по теоретическому материалу работы.
- Ознакомление с конструкцией и принципом действия генераторов постоянного тока (ГПТ) параллельного возбуждения и анализ экспериментальных характеристик. Вопросы для контроля:
- Привести классификацию генераторов постоянного тока по способу возбуждения.
- Рассказать конструкцию генератора постоянного тока параллельного возбуждения.
- Объяснить принцип действия генератора постоянного тока параллельного возбуждения как преобразователя механической мощности в электрическую.
- Какими достоинствами и какими недостатками обладает ГПТ независимого возбуждения по сравнению с ГПТ параллельного возбуждения?
- По каким причинам напряжение на зажимах генератора постоянного тока параллельного возбуждения уменьшается при увеличении нагрузки? Лабораторная работа № 3. Исследование двигателей постоянного тока (ДПТ) последовательного возбуждения.

Описание процедуры:

- Проверка отчета о лабораторной работе.
- Устный опрос по теоретическому материалу работы.
- Ознакомление с конструкцией и принципом действия ДПТ последовательного возбуждения и анализ экспериментальных характеристик. Вопросы для контроля:
- Привести классификацию двигателей постоянного тока по способу возбуждения.
- Объяснить принцип действия двигателя постоянного тока последовательного

возбуждения как преобразователя механической мощности в электрическую.

- Пояснить вид рабочих характеристик.
- Пояснить вид механических характеристик.
- Пояснить вид регулировочных характеристик.

Лабораторная работа № 4. Исследование двигателей постоянного тока (ДПТ) параллельного возбуждения.

Описание процедуры:

- Проверка отчета о лабораторной работе.
- Устный опрос по теоретическому материалу работы.
- Ознакомление с конструкцией и принципом действия ДПТ параллельного возбуждения и анализ экспериментальных характеристик.

Вопросы для контроля:

- Привести классификацию двигателей постоянного тока по способу возбуждения.
- Какими достоинствами и какими недостатками обладает ДПТ независимого возбуждения по сравнению с ДПТ параллельного возбуждения и ДПТ согласного возбуждения?
- Пояснить вид рабочих характеристик.
- Пояснить вид механических характеристик.
- Пояснить вид регулировочных характеристик.

Тема 6. Основные характеристики асинхронных машин предприятий нефтегазового комплекса.

Лабораторная работа № 5. Исследование характеристик асинхронного двигателя с короткозамкнутым ротором.

Описание процедуры:

- Проверка отчета о лабораторной работе.
- Устный опрос по теоретическому материалу работы.
- Ознакомление с конструкцией и принципом действия асинхронного двигателя с короткозамкнутым ротором и анализ экспериментальных характеристик. Вопросы для контроля:
- Пояснить принцип действия трехфазного асинхронного двигателя с короткозамкнутым ротором.
- Конструкция трехфазной асинхронной машины с короткозамкнутым ротором.
- Как практически изменить направление вращения вала двигателя?
- Дать определение скольжения, написать формулу расчета скольжения и пояснить все величины, входящие в эту формулу.
- В каких пределах изменяется скольжение в двигательном режиме. Лабораторная работа № 6. Исследование характеристик асинхронного двигателя с фазным ротором.

Описание процедуры:

- Проверка отчета о лабораторной работе.
- Устный опрос по теоретическому материалу работы.
- Ознакомление с конструкцией и принципом действия асинхронного двигателя с фазным ротором и анализ экспериментальных характеристик. Вопросы для контроля:
- Пояснить принцип действия трехфазного асинхронного двигателя с фазным ротором.
- Конструкция трехфазной асинхронной машины с фазным ротором.
- Как регулируется частота вращения вала двигателя?
- Дать определение скольжения, написать формулу расчета скольжения и пояснить все величины, входящие в эту формулу.

- В каких пределах изменяется скольжение в двигательном режиме. Лабораторная работа № 7. Регулирование частоты вращения асинхронного двигателя с короткозамкнутым ротором.

Описание процедуры:

- Проверка отчета о лабораторной работе.
- Устный опрос по теоретическому материалу работы.
- Ознакомление с способами регулирование частоты вращения асинхронного двигателя с короткозамкнутым ротором и анализ экспериментальных характеристик. Вопросы для контроля:
- Почему асинхронные машины получили такое название?
- Какие преимущества имеет асинхронный двигатель с короткозамкнутым ротором по сравнению с асинхронным двигателем с фазным ротором?
- Какие недостатки имеет асинхронный двигатель с фазным ротором по сравнению с асинхронным двигателем с короткозамкнутым ротором?
- Перечислить способы регулирования частоты вращения асинхронного двигателя.
- Пояснить условия создания вращающегося магнитного поля.

Тема 8. Характеристики синхронных генераторов и синхронных двигателей, применяемых на предприятиях нефтегазового комплекса.

Лабораторная работа № 8. Исследование характеристик синхронного генератора. Описание процедуры:

- Проверка отчета о лабораторной работе.
- Устный опрос по теоретическому материалу работы.
- Ознакомление с конструкцией и принципом действия синхронного генератора и анализ экспериментальных характеристик.

Вопросы для контроля:

- Пояснить принцип действия трехфазного синхронного генератора.
- Пояснить принцип действия однофазного синхронного генератора.
- Конструкция трехфазной синхронной машины с ротором с явновыраженными полюсами.
- Что такое характеристика холостого хода, и как она экспериментально снимается?
- Конструкция трехфазной синхронной машины с ротором с неявновыраженными полюсами.
- Что такое регулировочные характеристики, и как они экспериментально снимаются? Тема 9. Использование синхронных двигателей и синхронных компенсаторов для оптимизации режимов электроснабжения предприятий нефтегазового комплекса. Лабораторная работа № 9. Исследование синхронного трехфазного двигателя.
- Проверка отчета о лабораторной работе.
- Устный опрос по теоретическому материалу работы.
- Ознакомление с конструкцией и принципом действия синхронного двигателя и анализ экспериментальных характеристик.

Вопросы для контроля:

- Пояснить принцип действия трехфазного синхронного двигателя.
- Пояснить принцип действия однофазного синхронного двигателя.
- Конструкция трехфазной синхронной машины с ротором с явновыраженными полюсами.
- Способы пуска синхронного двигателя.
- Конструкция трехфазной синхронной машины с ротором с неявновыраженными полюсами.
- Что такое рабочие характеристики, и как они экспериментально снимаются? Лабораторная работа № 10. Исследование синхронной машины, работающей параллельно

с сетью.

Описание процедуры:

- Проверка отчета о лабораторной работе.
- Устный опрос по теоретическому материалу работы.
- Ознакомление с условиями включения синхронного генератора на параллельную работу с сетью.

Вопросы для контроля:

- Пояснить принцип действия трехфазного синхронного генератора.
- Конструкция трехфазного синхронного генератора.
- Перечислить условия включения синхронного генератора на параллельную работу с сетью.
- Как контролировать условия включения синхронного генератора на параллельную работу с сетью.
- Как регулировать ЭДС синхронного генератора?

Критерии оценивания.

Зачтено: полный и правильно оформленный отчет о лабораторной работе, правильные ответы на не менее чем 60% вопросов для контроля.

Не зачтено: неполный и/или неправильно оформленный отчет о лабораторной работе, правильные ответы на менее чем 60% вопросов для контроля.

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
ПК-4.1	Реализует технические и организационные мероприятия по	Устное собеседование по
	ремонту и диагностическому обслуживанию электрических машин, используемых на предприятиях нефтегазового комплекса	теоретическим вопросам и/или тестирование. Подготовка и защита отчётов по лабораторным работам

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 1, Типовые оценочные средства для проведения зачета по дисциплине

6.2.2.1.1 Описание процедуры

Зачет проводится в виде устного собеседования по теоретическим вопросам и/или в виде тестирования.

Пример задания:

Вопросы к зачету:

- Основные законы электротехники
- Принцип действия машины постоянного тока.
- Обратимость машины постоянного тока. Работа в режиме генератора и в режиме двигателя.
- Основные элементы конструкции машины постоянного тока.
- Обмотки машин постоянного тока. Типы обмоток якоря.=

6.2.2.1.2 Критерии оценивания

Зачтено	Не зачтено		
Знает технические и организационные	Не знает технические и организационные		
мероприятия по ремонту и	мероприятия по ремонту и		
диагностическому обслуживанию	диагностическому обслуживанию		
электрических машин, используемых на	электрических машин, используемых на		
предприятиях нефтегазового комплекса.	предприятиях нефтегазового комплекса.		

7 Основная учебная литература

- 1. Копылов И. П. Электрические машины : учеб. для электромех. и электроэнергет. специальностей вузов / И. П. Копылов, 2006. 606.
- 2. Коновалов Ю. В. Электрооборудование производств [Электронный ресурс] : учебное пособие / Ю. В. Коновалов, 2011. 178.
- 3. Коновалов Ю. В. Электрические машины : учебное пособие / Ю. В. Коновалов, О. В. Арсентьев, 2018. 92.

8 Дополнительная учебная литература и справочная

- 1. Коновалов Ю. В. Электрические машины и электропривод : учебное пособие / Ю. В. Коновалов, О. В. Арсентьев, 2018. 92.
- 2. Коновалов Ю. В. Электрические машины. Раздел "Асинхронные машины" : лабораторный практикум / Ю. В. Коновалов, 2018. 63.
- 3. Коновалов Ю. В. Электрические машины и электропривод : практикум / Ю. В. Коновалов, 2018. 66.
- 4. Коновалов Ю. В. Электрооборудование производств: учебное пособие для магистрантов всех форм обучения / Ю. В. Коновалов, 2019. 142.
- 5. Коновалов Ю. В. Электрооборудование промышленных и энергетических предприятий: электронный курс / Ю. В. Коновалов, 2022
- 6. Коновалов Ю. В. Электрические машины и электропривод. Очное обучение по направлению 21.05.04. Специализация: Горные машины и оборудование (ГМ): электронный курс / Ю. В. Коновалов, 2023

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/
- 11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем
- 1. Microsoft Windows Professional 8 Russian
- 2. Microsoft Office Standard 2010_RUS_ поставка 2010 от ООО "Азон"

12 Материально-техническое обеспечение дисциплины

- 1. Лабораторное оборудование "Электроэнергетика и Электротехника- эл. машины"
- 2. Компьютер Синком i5-4440(3.1)/4Gb/500Gb/VGA/23"
- 3. Мультим.проектор "BenQ MW621ST" с экраном