Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Структурное подразделение «Электроснабжения и электротехники»

УТВЕРЖДЕНА:

на заседании кафедры электроснабжения и электротехники Протокол №12 от 18 июня 2025 г.

Рабочая программа дисциплины

«ИЗОЛЯЦИЯ И ПЕРЕНАПРЯЖЕНИЯ»						
11						
Направление: 13.03.02 Электроэнергетика и электротехника						
Электроснабжение						
Квалификация: Бакалавр						
Форма обучения: очная						

Документ подписан простой электронной подписью Составитель программы: Потапов Василий Васильевич Дата подписания: 05.06.2025

Документ подписан простой электронной подписью Утвердил: Шакиров Владислав Альбертович Дата подписания: 18.06.2025

Документ подписан простой электронной подписью Согласовал: Суслов Константин Витальевич Дата подписания: 09.06.2025

1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

1.1 Дисциплина «Изоляция и перенапряжения» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ПКС-2 Способность к выполнению работ по	
эксплуатаций оборудования и систем	ПКС-2.12
электроснабжения	
С-3 Способность выполнять работы по	
диагностике и ремонту систем электроснабжения	11KC-5.4

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ПКС-2.12	Выполняет необходимые расчёты и выбор изоляции и изоляционных конструкций	Знать физические процессы электрического пробоя в различных средах, принципы выполнения и испытания изоляции высокого напряжения; Уметь формировать законченное представление о принятых решениях отчета с его публичной защитой Владеть навыками проведения стандартных испытаний электроизоляционных материалов
ПКС-3.4	Выполняет расчёт электрической изоляции, проходных и опорных изоляторов, силовых электрических кабелей	Знать методы и технику испытания изоляции и изоляционных конструкций Уметь формировать законченное представление о полученных результатах в виде научнотехнического отчета с его публичной защитой Владеть навыками проведения стандартных испытаний электроэнергетического и электротехнического оборудования и систем; методами испытаний изоляции высокого напряжения.

2 Место дисциплины в структуре ООП

Изучение дисциплины «Изоляция и перенапряжения» базируется на результатах освоения следующих дисциплин/практик: «Теоретические основы электротехники», «Электротехнологическое и конструкционное материаловедение»

Дисциплина является предшествующей для дисциплин/практик: «Качество электроэнергии»

3 Объем дисциплины

Объем дисциплины составляет – 3 ЗЕТ

Вид учебной работы	Трудоемкость в академич (Один академический час со минутам астрономическ	ответствует 45
	Всего	Семестр № 8
Общая трудоемкость дисциплины	108	108
Аудиторные занятия, в том числе:	44	44
лекции	22	22
лабораторные работы	0	0
практические/семинарские занятия	22	22
Самостоятельная работа (в т.ч. курсовое проектирование)	64	64
Трудоемкость промежуточной аттестации	0	0
Вид промежуточной аттестации (итогового контроля по дисциплине)	Зачет	Зачет

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр № 8

	11	Виды контактной работы					C	DC	Ф	
No	Наименование раздела и темы дисциплины	Лекции		ЛР		ПЗ(СЕМ)		CPC		Форма
п/п		Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Раздел 1. Классификация электрической изоляции.	1	2							Устный опрос
2	Раздел 2. Условия работы и требования к электрической изоляции.	2	2					1	10	Устный опрос
3	Раздел З.Наружная изоляция электроустановок	3	2			1	3	1	10	Устный опрос
4	Раздел 4.Изоляция силовых конденсаторов и трансформаторов	4	2			2	3	1	10	Устный опрос
5	Раздел 5. Изоляция силовых кабелей и вращающихся машин.	5	2			3	3			Устный опрос
6	Раздел 6.Методы испытания	6	2			4	3	1	10	Устный опрос

	изоляции.								
7	Раздел 7. Классификация видов перенапряжений.	7	2						Устный опрос
8	Раздел 8.Уровни и координация изоляции. Волновые процессы в длинных линиях.	8	2						Устный опрос
9	Раздел 9. Волновые процессы в трансформаторах	9	1						Устный опрос
10	Раздел10. Атмосферные перенапряжения	10	2		5	3	1	9	Устный опрос
11	Раздел 12.Коммутационн ые перенапряжения	12	1		7	3	1	5	Устный опрос
12	Раздел 13.Средства защиты от перенапряжений.	13	1		8	2	1	10	Устный опрос
13	Раздел 11.Квазистациона рные и феррорезонансны е перенапряжения.	11	1		6	2			Устный опрос
	Промежуточная аттестация								Зачет
	Всего		22			22		64	

4.2 Краткое содержание разделов и тем занятий

Семестр № 8

No	Тема	Краткое содержание	
1	Раздел 1.	Тема 1.1.Внешняя изоляция. Внутренняя изоляция.	
	Классификация	Тема 1.2.Воздействующие напряжения на	
	электрической	изоляцию в процессе эксплуатации. Рабочее	
	изоляции.	напряжение.Тема 1.3.Внутренние	
		(коммутационные) перенапряжения. Атмосферные	
		(грозовые) перенапряжения. Тема	
		1.4.Воздействующие факторы и воздействия на	
		изоляцию в процессе эксплуатации.	
		Электрические факторы. Механические факторы	
		Тепловые воздействия. Атмосферные воздействия.	
		Фактор времени. Воздействующие среды.	
2	Раздел 2. Условия	Тема 2.1.Классификация нагревостойкости	
	работы и требования к	электроизоляционных материалов для	
	электрической	электрических машин, трансформаторов и	
	изоляции.	аппаратов	
3	Раздел З.Наружная	Тема 3.1.Назначение изоляторов. Тема	

		າ າ ти
	изоляция	3.2.Изоляция воздушных линий электропередачи.
	электроустановок	Опорные изоляторы: штыревые опорные
		изоляторы, стержневые опорные изоляторы.
		Проходные изоляторы. Высоковольтные вводы.
4	Раздел 4.Изоляция	Тема 4.1.Изоляция трансформаторов высокого
	силовых конденсаторов	напряжения. Тема 4.2.Изоляция трансформаторов
	и трансформаторов	тока. Тема 4.3.Изоляция трансформаторов
		напряжения. Тема 4.4.Изоляция силовых
		трансформаторов. Тема 4.5.Изоляция
		испытательных трансформаторов.
5	Раздел 5. Изоляция	Тема 5.1.Основные конструктивные элементы
	силовых кабелей и	кабеля. Кабели с вязкой пропиткой.
	вращающихся машин.	Маслонаполненные кабели. Газонаполненные
		кабели. Кабели в стальных трубах под давлением
		масла или газа. Кабельные линии в трубах со
		сжатым газом. Кабели с резиновой или
		пластмассовой изоляцией. Тема 5.2.Изоляция
		вращающихся машин высокого напряжения.
		Классификация изоляции: Главная
		(высоковольтная) изоляция, межвитковая
		изоляция.
6	Раздел 6.Методы	Тема 6.1.Контрольные приемосдаточным
	испытания изоляции.	испытания. Приемо-сдаточные испытания после
	·	монтажа, перед вводом в эксплуатацию. Контроль
		состояния изоляции высоковольтного
		оборудования. Тема 6.2.Испытания высоким
		напряжением. Испытания грозовыми импульсами
		напряжения. Испытания внутренней изоляции
		(кроме газовой). Испытания внешней изоляции.
		Испытания коммутационными импульсами
		напряжения. Измерения характеристик частичных
		разрядов. Испытание изоляции на тепловую
		устойчивость. Тема 6.3.Профилактические
		испытания и диагностика изоляции оборудования
		высокого напряжения: профилактические
		испытания высоким напряжением. Тема
		6.4.Неразрушающие электрические методы
		испытаний. Неразрушающие неэлектрические
		методы контроля. Тема 6.5.Методы контроля
		изоляции при рабочем напряжении.
7	Раздел 7.	Тема 7.1.Основные характеристики
,	Классификация видов	перенапряжения. Тема 7.2.Внешние
	перенапряжений.	перенапряжения: атмосферные перенапряжения) и
	ineperiarip.	от воздействия внешних источников. Тема
		7.3.Внутренние перенапряжения:
		квазистационарные перенапряжения,
		коммутационные перенапряжения.
8	Раздел 8.Уровни и	Тема 8.1.Уровни и координация изоляции. Тема
U	координация изоляции.	8.2.Волновые процессы в линиях. Отражение и
	Волновые процессы в	преломление волн. Многократные отражения.
		Преломление волн. Многократные отражения. Схемы замещения.
	длинных линиях.	Олсімірі заімісщения.

9	Раздел 9. Волновые	Тема 9.1. Причины вызывающие перенапряжения
	процессы в	в трансформаторах: коммутационные (включение
	трансформаторах	и выключение трансформатора или соединенных с
		ним электрических линий), короткие замыкания и
		грозовые разряды. Тема 9.1. Защита от
		перенапряжений.
10	Раздел10. Атмосферные	Тема 10.1.Поражения линий электропередач
	перенапряжения	ударам молнии. Вероятность попадания молнии в
		опору или в трос вблизи опоры. Тема
		10.2.Индуктированные перенапряжения. Тема
		10.3.Грозопоражаемость контактной сети
11	Раздел	Тема 12.1.Процессы с коммутацией при
	12.Коммутационные	нормальном и аварийном режимах. Колебательные
	перенапряжения	свойства электрических систем. Процесс
		коммутации в электрической системе (включение
		разомкнутой линии толчком).Тема
		12.2.Перенапряжения при отключении
		ненагруженных линий.
12	Раздел 13.Средства	Тема 13.1.Классификация мероприятий по защите
	защиты от	от перенапряжений. Превентивные меры.
	перенапряжений.	Коммутационные средства защиты от
		перенапряжений. Тема 13.2.3аземления опор
		воздушных линий и металлических корпусов
		оборудования подстанций: рабочее заземление,
		защитное заземление, грозозащитное заземление.
		Сопротивление заземляющего устройства.
13	Раздел	Тема 11.1.Квазистационарные и феррорезонансные
	11.Квазистационарные	перенапряжения.
	и феррорезонансные	
	перенапряжения.	

4.3 Перечень лабораторных работ

Лабораторных работ не предусмотрено

4.4 Перечень практических занятий

Семестр № 8

Nº	Темы практических (семинарских) занятий	Кол-во академических часов
1	Наружная изоляция электроустановок.	3
2	Изоляция вращающихся машин и трансформаторов.	3
3	Изоляция силовых кабелей и конденсаторов.	3
4	Методы испытания изоляции.	3
5	Атмосферные перенапряжения	3
6	Квазистационарные и феррорезонансные перенапряжения.	2
7	Коммутационные перенапряжения.	3
8	Средства защиты от перенапряжений.	2

4.5 Самостоятельная работа

Семестр № 8

Nº	Вид СРС	Кол-во академических часов
1	Подготовка к практическим занятиям (лабораторным работам)	64

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: Дискуссия

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по практическим занятиям

Пример

Практическое занятие №1. Наружная изоляция электроустановок

Цель занятия: Выполнение расчета высоковольтного ввода с комбинированной бумажнопленочной изоляцией на напряжение 110 кВ для трансформаторов.

Задание на занятие: выполнить расчет наружной изоляции при положительной полярности.

Рекомендации по выполнению заданий: согласно методическим указаниям

5.1.2 Методические указания для обучающихся по самостоятельной работе:

Самостоятельная работа предусмотрена

- для углубленного изучения дисциплины (изучение тем, вынесенных на самостоятельную проработку), поиск и обзор литературы и электронных источников информации по индивидуальному заданию;
- для формирования умений: работать со справочной, нормативной, правовой документацией, периодическими изданиями и другими информационными источниками; грамотно оформить и подготовить отчёты по лабораторным работам.

Самостоятельная работа предлагается по разделам:

- Классификация электрической изоляции.
- Управление Условия работы и требования к электрической изоляции.
- Наружная изоляция электроустановок.
- Изоляция силовых конденсаторов и трансформаторов.
- Изоляция силовых кабелей и вращающихся машин.
- Методы испытания изоляции.
- Классификация видов перенапряжений.
- Уровни и координация изоляции. Волновые процессы в линиях.
- Волновые процессы в трансформаторах.
- Атмосферные перенапряжения.
- Квазистационарные и феррорезонансные перенапряжения.
- Коммутационные перенапряжения.
- Средства защиты от перенапряжений

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 семестр 8 | Устный опрос

Описание процедуры.

Вопросы для контроля формируются на основе пройдённого материала индивидуально для каждого обучающегося исходя из данных предыдущих контроля в произвольной форме с целью избежание подготовки студента только к определенным вопросам. Развернутый ответ студента должен представлять собой связное, логически последовательное сообщение на заданную тему, показывать его умение применять определения, правила в конкретных случаях.

Вопросы для контроля: Методы контроля изоляции при рабочем напряжении.

В чем заключается сущность фотоионизации.

Приведите графическое представление закона Пашена.

Объясните поправку на относительнуюплотность воздуха: смысл и математическое выражение.

Критерии оценивания.

полнота и правильность ответа;

степень осознанности, понимания изученного;

При ответе в полном объеме, студент оценивается как «хорошо», при частичном (50% ответа) – «удовлетворительно», при отсутствии правильных ответов – «неудовлетворительно».

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
ПКС-2.12	Знает физические процессы	Устное
	электрического пробоя в различных	собеседование по
	средах, принципы выполнения и	теоретическим
	испытания изоляции высокого	вопросам и
	напряжения;	выполнение
	Умеет формировать законченное	практического
	представление о принятых решениях	задания
	отчета с его публичной защитой;	
	Владеет навыками проведения	
	стандартных испытаний	
	электроизоляционных материалов	
ПКС-3.4	Устное собеседование по	Знает методы и
	теоретическим вопросам и	технику

выполнение практич	неского задания	испытания	
		изоляции	И
		изоляционных	
		конструкций;	
		Умеет	
		формировать	
		законченное	
		представление	. 0
		полученных	
		результатах	В
		виде нау	чно-
		технического	
		отчета с	его
		публичной	
		защитой;	
		Владеет навык	ками
		проведения	
		стандартных	
		испытаний	
		электроэнерге	тич
		еского	И
		электротехнич	
		ого оборудова	пин
		и сис	тем;
		методами	
		испытаний	
		изоляции	
		высокого	
		напряжения.	

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 8, Типовые оценочные средства для проведения зачета по дисциплине

6.2.2.1.1 Описание процедуры

Зачет по курсу проводятся в письменной или устной форме. Билет содержит теоретический вопросы.

Если оценка за ответ на зачёте (экзамене) не совпадает с предварительной оценкой, то результирующая оценка выставляется после дополнительной устного собеседования.

Пример задания:

- 1. Дайте классификацию конфигурации электрических полей.
- 2. Объясните процесс образования лавины электронов.
- 3. В чем заключается сущность ударной ионизации.
- 4. В чем заключается сущность фотоионизации.
- 5. Приведите графическое представление закона Пашена.
- 6. Объясните поправку на относительную плотность воздуха: смысл и математическое

выражение.

- 7. В чем заключается эффект полярности при пробое газа.
- 8. Объясните барьерный эффект в газе при положительной полярности острия.
- 9. Объясните барьерный эффект в газе при отрицательной полярности острия.
- 10. Дайте объяснение процесса развития разряда вдоль сухой и чистой поверхности в поле с преобладающей тангенциальной составляющей.
- 11. Дайте объяснение процесса развития разряда вдоль сухой и чистой поверхности в поле с преобладающей нормальной составляющей.
- 12. Объясните суть процесса коронирования на переменном напряжении.
- 13. Дайте определение вольт-секундным характеристикам изоляции и их назначению.
- 14. Как происходит пробой жидких диэлектриков?
- 15. Как происходит пробой твердой изоляции?
- 16. Перечислить условия работы и требования, предъявляемые к высоковольтной изоляции оборудования.
- 17. Сформулируйте назначение и конструктивные особенности изо- ляции воздушных ЛЭП.
- 18. Назовите особенности назначения и конструктивного исполнения проходных изоляторов.
- 19. Объясните особенности высоковольтных вводов по назначению, типу изоляции, конструктивному исполнению.
- 20. Объясните особенности силовые трансформаторов по назначению, конструктивному исполнению изоляции.
- 21. В чем заключаются особенности силовых кабелей по назначению и конструктивному исполнению.
- 22. В чем заключаются особенности конструктивного исполнения силовых кабелей с вязкой пропиткой.
- 23. Объясните особенности изоляции вращающихся машин высокого напряжения по типу и материалу изоляции, конструктивному исполнению.
- 24. Перечислите и дайте характеристику основным методам профилактических испытаний изоляции высоковольтного оборудования в эксплуатационных условиях. Тест

N01 (Ларионов, § 1.1)

Какие виды ионизации присутствуют при разрядах в газах?

- 1. Ударная и термическая ионизация.
- 2. Все виды, указанные в других ответах.
- 3. Фотоионизация в объеме газа.
- 4. Поверхностная ионизация на электродах.

N02 (Ларионов, § 1.1)

Каков основной вид ионизации в газах при нормальных атмосферных условиях разряда?

- 1. Фотоионизация в объеме газа.
- 2. Термическая ионизация.
- 3. Ударная ионизация.
- 4. Поверхностная ионизация на электродах.

N03 (Ларионов, § 1.1)

Каков основной вид ионизации в газах при высокой температуре разряда?

- 1. Термическая ионизация.
- 2. Ударная ионизация.
- 3. Фотоионизация в объеме газа.
- Плверхностная ионизация на электродах.

N04 (Ларионов, § 1.2)

Что обозначает коэффициент ударной ионизации электронами при разряде в газах?

- 1. Число ионизаций, совершенных всеми электронами на пути в 1 см по направлению движения в электрическом поле.
- 2. Число ионизаций, совершенных одним электроном в течениие 1 с по направлению движения в электрическом поле.
- 3. Число ионизаций, совершенных одним электроном при увеличении температуры межэлектродного пространства на $1\,^{\circ}$ C.
- 4. Число ионизаций, совершенных одним электроном на пути в 1 см по направлению движения в электрическом поле.

N05 (Ларионов, § 1.2)

Что влияет на величину коэффициента ударной ионизации электронами при разряде в газах?

- 1. Материал электродов и вид напряжения.
- 2. Скорость нарастания напряжения и влажность газа.
- 3. Напряженность электрического поля Е и давление газа р.
- 4. Все факторы, указанные в других ответах.

N06 (Ларионов, § 1.2)

Какие процессы вторичной ионизации обеспечивают выполнение условия самостоятельности разряда в газах?

- 1. Поверхностная ионизация на катоде при нормальном и большом давлении и фотоионизация в объеме газа при малом давлении газов.
- 2. Поверхностная ионизация на катоде при малом давлении газов и фотоионизация в объеме газа при нормальном и большом давлении газов.
- 3. Поверхностная фотоионизация на катоде при любом давлении газов.
- 4. Фотоионизация в объеме газа при любом давлении газа в промежутке N07 (Ларионов, § 1.3)

Что называется стримером при разряде в газах?

- 1. Пространство, заполненное плазмой (отрицательными и положительными частицами с высокой степенью плотности).
- 2. Начальная лавина электронов у катода.
- 3. Вторичные лавины в объеме газа.
- 4. Электрическая дуга при разряде.

N08 (Ларионов, § 5.1)

По каким последовательным этапам происходит развитие разряда в газах в однородном поле?

- 1. Появление эффективного электрона, образование стримера, образование лавины электронов, выполнение условия самостоятельности разряда и перекрытие промежутка.
- 2. Появление эффективного электрона, образование лавины электронов, выполнение условия самостоятельности разряда, образование стримера и перекрытие промежутка.
- 3. Образование лавины электронов, появление эффективного электрона, образование стримера, выполнение условия самостоятельности разряда и перекрытие промежутка.
- 4. Появление эффективного электрона, выполнение условия самостоятельности разряда, образование стримера, образование лавины электронов и перекрытие промежутка.

N09 (Ларионов, § 5.1)

Как формулируется закон Пашена при пробое промежутка в однородном электрическом поле?

- 1. Пробивное напряжение газа является функцией произведения температуры газа на расстояние между электродами.
- 2. При неизменной температуре пробивное напряжение газа является функцией произведения давления газа на расстояние между электродами.
- 3. При неизменной температуре пробивное напряжение газа является функцией произведения плотности газа на расстояние между электродами.
- 4. При любой температуре пробивное напряжение газа является функцией произведения влажности газа на расстояние между электродами.

N10 (Ларионов, § 5.1)

Какой вид имеет графическая зависимость закона Пашена при пробое промежутка в однородном электрическом поле?

- 1. Зависимость обозначена буквой А.
- 2. Зависимость обозначена буквой Б.
- 3. Зависимость обозначена буквой В.
- Зависимость обозначена буквой Γ.

N11 (Ларионов, § 5.2)

Как формулируется закон Пашена при пробое промежутка в неоднородном электрическом поле (закон подобия разрядов)?

- 1. При неизменной температуре пробивное напряжение газа является функцией произведения давления газа на расстояние между электродами и отношения к этому расстоянию основных геометрических размеров промежутка.
- 2. Пробивное напряжение газа является функцией произведения температуры газа на расстояние между электродами.
- 3. При неизменной температуре пробивное напряжение газа является функцией произведения плотности газа на расстояние между электродами и отношения к этому расстоянию основных геометрических размеров промежутка.
- 4. При любой температуре пробивное напряжение газа является функцией произведения влажности газа на расстояние между электродами.

N12 (Ларионов, § 6.1)

Из каких составляющих складывается время разряда в газах?

- 1. Только из времени формирования разряда.
- 2. Из времени подьема напряжения и времени формирования разряда.
- 3. Из времени статистического запаздывания (время ожидания эффективного электрона) и времени формирования разряда.
- 4. Из времени подьема напряжения и времени горения дуги.

N13 (Ларионов, § 6.1)

Что называется вольт-секундной характеристикой изоляции?

- 1. Зависимость минимального напряжения разряда от времени горения дуги при разряде.
- 2. Зависимость приложенного напряжения к изоляции от времени его приложения.
- 3. Зависимость приложенного напряжения к изоляции от времени горения дуги.
- 4. Зависимость максимального напряжения разряда от времени действия импульса.

N14 (Ларионов, § 6.1)

Каким напряжением воздействуют на изоляцию для снятия ее вольт- секундной характеристики?

- 1. Любым импульсом высокой частоты.
- 2. Переменным напряжением 50 Гц различной амплитудой.
- 3. Постоянным напряжением различной амплитудой.
- 4. Стандартной волной напряжения 1,2/50 мкс различной амплитудой.

N15 (Ларионов, § 6.1)

Как выглядят вольт-секундные характеристики изоляции в однородном и неоднородном полях?

- 1. Крутые для однородного и неоднородном полей.
- 2. Пологая в неоднородном поле и крутая в однородном поле.
- 3. Пологие для однородного и неоднородном полей.
- 4. Пологая в однородном поле и крутая в неододнородном поле.

N16 (Ларионов, § 7.1)

Как изменяется пробивное напряжение (Uпр) в однородном поле при внесении твердого диэлектрика в промежуток между электродами?

- 4. Uпр при малых размерах диэлектрика уменьшается, а при больших увеличивается.

N17 (Ларионов, § 7.1)

В однородном поле при внесении твердого диэлектрика в промежуток между электродами пробивное напряжение (Uпр) снижается. Чем это вызвано?

- 1. Наличием микротрещин в диэлектрике.
- 2. Различной величиной диэлектрической проницаемости воздуха и диэлектрика и наличием влаги на поверхности диэлектрика.
- 3. Различной величиной диэлектрической проницаемости воздуха и диэлектрика и нагревом электродов.
- 4. Различной величиной температуры воздуха и диэлектрика и наличием влаги на поверхности диэлектрика.

N18 (Ларионов, § 9.3)

Как влияет установка барьера в однородном электрическом поле на электрическую прочность промежутка?

- 1. Электрическая прочность незначительно повышается.
- 2. Электрическая прочность незначительно снижается.
- 3. Электрическая прочность не изменяется.
- 4. Электрическая прочность резко повышается.

N19 (Ларионов, § 9.3)

Как влияет установка барьера в неоднородном электрическом поле на электрическую прочность промежутка?

- 1. Электрическая прочность незначительно снижается.
- 2. Электрическая прочность незначительно повышается.
- 3. Электрическая прочность не изменяется.
- 4. Электрическая прочность значительно повышается.

N20 (Ларионов, § 9.3)

Каково оптимальное расположение барьера (с наибольшим Uпр) в промежутке с неоднородным электрическим полем?

- 1. Непосредственно у коронирующего электрода.
- 2. На расстоянии 1/2 длины промежутка от коронирующего электрода.
- 3. На расстоянии 1/5-1/6 длины промежутка от коронирующего электрода.
- 4. Непосредственно у некоронирующего электрода.

N21 (Ларионов, § 4.1)

Какова прочность (Uпр) воздушного промежутка с однородным электрическим полем длиной 1 см при нормальных (T=20° C, P=760 мм.рт.ст) атмосферных условиях?

- 1. 10 kB.
- 2. 11,5 κB.
- 3. 31,5 kB.
- 4. 45 κB

N22 (Стефанов, § 1-10)

Что физически представляет собой ток короны на проводах ВЛ переменного напряжения?

- 1. Движение объемного заряда от фазного провода к земле.
- 2. Движение объемного заряда между фазными проводами.
- 3. Процесс ударной ионизации вокруг провода.
- 4. Движение объемного заряда вокруг провода в зависимости от изменения переменного напряжения сети.

N23 (Стефанов, § 1-10)

Что вызывает явление короны на проводах ВЛ переменного напряжения?

- 1. Радиопомехи.
- 2. Потери электроэнергии.
- 3. Все указанное в других ответах.
- 4. Снижение уровня перенапряжений.

N24 (Стефанов, § 1-10)

Что вызывает потери энергии на местную корону на проводах ВЛ переменного напряжения?

- 1. Неровности (выступы, шероховатости и т.п.) на поверхности проводов ВЛ.
- 2. Состояние погодных условий вокруг ВЛ.
- 3. Протекающий по ВЛ ток нагрузки.
- 4. Все указанное в других ответах.

N25 (Стефанов, § 1-10)

На каких ВЛ высокого напряжения наиболее энергоемкая корона?

- 1. На ВЛ постоянного напряжения с расположением проводов по одну сторону от заземленной опоры (биполярная корона).
- 2. На ВЛ переменного напряжения.
- 3. На ВЛ постоянного напряжения с расположением проводов по обе стороны от заземленной опоры (униполярная корона).
- 4. Потери на корону не зависят от вида напряжения ВЛ.

N26 (Стефанов, § 1-10)

Какими способами можно снизить потери на корону на проводах ВЛ переменного напряжения?

- 1. Увеличением диаметра провода.
- 2. Расщеплением фазного провода ВЛ.

- 3. Всеми способами, указанными в других ответах.
- 4. Улучшением поверхности провода.

N27 (Стефанов, § 1-10)

Каково значение расстояния между проводами в расщепленной фазе (шаг расщепления) на проводах ВЛ переменного напряжения?

- 1. 15 см.
- 2. 40 см.
- 3. 70 см.
- 4. Не нормируется.

N28 (Стефанов, § 1-10)

На каких ВЛ переменного напряжения выполняется расщепление фазы провода?

- 1. На ВЛ напряжением 35 кВ и выше.
- 2. На ВЛ напряжением 110 кВ и выше.
- 3. На ВЛ напряжением 500 кВ и выше.
- 4. На ВЛ напряжением 220 кВ и выше.

N1 (Стефанов, § 6-1)

Каковы основные электрические характеристики изоляторов на ВЛ?

- 1. Пробивное напряжение.
- 2. Все указанные в других ответах.
- 3. Сухоразрядное и мокроразрядное напряжение.
- 4. Электромеханическая характеристика.

N2 (Стефанов, § 6-1)

Как соотносятся между собой основные электрические характеристики изоляторов на ВЛ?

- 1. Пробивное напряжение Uпр на 30% выше сухоразрядного напряжения Ucp, которое в среднем на 30% выше мокроразрядного напряжения Ump.
- 2. Пробивное напряжение Uпр на 20% ниже сухоразрядного напряжения Ucp, которое в среднем на 30% выше мокроразрядного напряжения Ump.
- 3. Пробивное напряжение Uпр равно сухоразрядному напряжению Ucp, которое в среднем на 30% выше мокроразрядного напряжения Uмp.
- 4. Пробивное напряжение Uпр на 70% выше сухоразрядного напряжения Ucp, которое в среднем на 5% выше мокроразрядного напряжения Uмp. N3 (Стефанов, § 6.1)

Как производится выбор числа изоляторов на проводах ВЛ переменного напряжения?

- 1. По сухоразрядному напряжению, которое должно быть выше расчетного уровня внутренних перенапряжений электрической системы.
- 2. По мокроразрядному напряжению, которое должно быть выше расчетного уровня внутренних перенапряжений электрической системы.
- 3. По пробивному напряжению, которое должно быть выше расчетного уровня внутренних перенапряжений электрической системы.
- 4. По вольт-секундной характеристике, которая должна быть выше расчетного уровня атмосферных перенапряжений электрической системы.

N4 (Стефанов, § 6.2)

Как распределяется напряжение по элементам гирлянды изоляторов на ВЛ переменного напряжения?

1 Неравномерно, больше всего загружен изолятор в середине гирлянды изоляторов ВЛ.

2Неравномерно, больше всего загружен первый изолятор от опоры ВЛ.

ЗНеравномерно, больше всего загружен первый изолятор от провода ВЛ.

4Равномерно по всем изоляторам гирлянды ВЛ.

№ (Стефанов, § 6.2)

Чем объясняется неравномерное распределение напряжения по элементам гирлянды изоляторов на ВЛ переменного напряжения?

- 1. Наличием в гирлянде частичных емкостей ее элементов относительно заземленных частей опоры и относительно линейного провода.
- 2. Различной емкостью изоляторов гирлянды.
- 3. Только наличием в гирлянде частичных емкостей ее элементов относительно заземленных частей опоры.
- 4. Только наличием в гирлянде частичных емкостей ее элементов относительно линейного провода.

N6 (Стефанов, § 6.2)

Каким образом можно уменьшить неравномерность распределения напряжения по элементам гирлянды изоляторов на ВЛ переменного напряжения?

- 1. Применением изоляторов с полупроводящей глазурью.
- 2. Применением изоляторов большой емкости (например стеклянных).
- 3. Всеми способами, указанными в других ответах.
- 4. Установкой на гирлянде защитной арматуры в виде экранных колец, рогов, восьмерок.

N7 (Стефанов, § 9.2)

Каково устройство главной изоляции силовых высоковольтных трансформаторов напряжением 110 кВ и выше?

- 1. Изоляция выполняется бумажно-масляной.
- 2. Изоляция выполняется исключительно масляной.
- 3. Изоляция выполняется маслобарьерной с использованием бумажномасляной обмотки.
- 4. Изоляция выполняется только маслобарьерной.

N8 (Стефанов, § 9.2)

В изоляции силовых высоковольтных трансформаторов напряжением

110 кВ и выше на торцах обмотки ВН устанавливаются емкостные кольца. С какой целью они применяются?

- 1. Для снижения температуры нагрева обмотки ВН.
- 2. Для улучшения распределения напряжения в продольной изоляции обмотки и уменьшения степени неоднородности электрического поля в зоне торца обмотки ВН.
- 3. Для защиты от внутренних перенапряжений в процессе эксплуатации.
- 4. Для выполнения всех задач, указанных в других ответах.

N9 (Ларионов, § 33.2)

Основные виды изоляции кабельных линий высокого напряжения?

- 1. Для всех напряжений бумажно-масляная изоляция.
- 2. До 10 кВ бумажно-масляная изоляция, 35 кВ и выше газонаполненная.
- 3. До 110 кВ бумажно-масляная изоляция, 220 кВ и выше маслонаполненная.
- 4. До 35 кВ бумажно-масляная изоляция, 110 кВ и выше маслонаполненная.

N10 (Ларионов, § 33.2)

Каков основной недостаток изоляции с вязкой пропиткой кабельных линий высокого напряжения?

- 1. Недостаточная механическая прочность.
- 2. Образование газовых включений, в результате снижение электрической прочности.
- 3. Слабая термостойкость.
- 4. Повышенная пожароопасность при повреждениях.

N11 (Ларионов, § 33.2)

Каким образом определяется место повреждения кабельной линии высокого напряжения?

1. Абсолютным методом (акустическим или индукционным).

- 2. Сначала примерное место меггаомметром М 2500, затем точное место абсолютным методом (испытание повышенным U).
- 3. Относительным методом (прибор ИКЛ).
- 4. Сначала примерное место относительным методом (прибор ИКЛ), затем точное место абсолютным методом (акустическим или индукционным).

N12 (Стефанов, § 10-3)

Каковы основные виды изоляции вращающихся машин высокого напряжения?

- 1. В машинах напряжением 6 кВ и выше непрерывная микалентная изоляция.
- 2. В машинах напряжением 6 кВ изоляция резиновая, 10 кB и выше пластмассовая изоляция.
- 3. В машинах напряжением 6 кВ изоляция гильзовая, 10 кВ и выше непрерывная микалентная изоляция.
- 4. В машинах напряжением 6 кВ и выше гильзовая изоляция.

N13 (Стефанов, § 10-3)

Каковы способы борьбы с короной в изоляции машин высокого напряжения?

- 1. Все указанное в других ответах.
- 2. Применение железисто-асбестовой ленты по всей длине обмотки.
- 3. Увеличение расстояния воздушного промежутка в местах выхода провода обмотки из паза.
- 4. Нанесение полупроводящих лаков в местах выхода обмотки из паза.

N14 (Стефанов, § 10-3)

Какова норма испытательного напряжения главной изоляции машин высокого напряжения?

- 1. (1,5 1,7) Uном.
- 2. (3 4) Uном.
- 3. (2,5 3) Uном.
- 4. (5 6) Uном.

N15 (Ларионов, § 19.1)

Какие виды поляризации протекают при приложении переменного напряжения к диэлектрикам?

- 1. Межслоевая поляризация.
- 2. Электронная и ионная поляризации.
- 3. Дипольная поляризация.
- 4. Все указанные в других ответах

N16 (Ларионов, § 19.1)

Каковы примерные нормы сопротивления изоляции электрооборудования напряжением до 1 кВ?

- 1 .Не нормируется.
- 2. Не менее 1 МОм сопротивления на 1В напряжения сети.
- 3. Не менее 10 кОм.
- 4. 1 кОм сопротивления на 1В напряжения сети.

N17 (Ларионов, § 19.2)

Что такое коэффициент абсорбции?

- 1. Отношение емкости изоляции при напряжении с частотой 2 Γ ц к емкости при напряжении 50 Γ ц (C2 / C50).
- 2. Отношение сопротивления изоляции при времени приложения 30 с к сопротивлению при времени 5 с (R30 / R5).
- 3. Отношение сопротивления изоляции при времени приложения 60 с к сопротивлению при времени 15 с (R60 / R15).
- 4. Отношение емкости изоляции при напряжении с частотой 50 Гц к емкости при

напряжении 2 Гц (С50 / С2).

N18 (Ларионов, § 19.2)

Как изменяется коэффициент абсорбции (Кабс) с изменением влажности изоляции?

- 1. Для нормальной изоляции Кабс= 1,2 1,3, с ростом влажности стремится к 1.
- 2. Для нормальной изоляции Кабс= 1,5 1,6, с ростом влажности стремится к 3.
- 3. Для нормальной изоляции Кабс= 1,1 1,2, с ростом влажности стремится к 0,5.
- 4. Для нормальной изоляции Кабс= 1,2 1,3, с ростом влажности стремится к 2. N19 (Ларионов, \S 19.2)

Как изменяется отношение C2 / C50 с увеличением влажности изоляции, при определении качества изоляции путем измерения емкостных характеристик?

- 1. Для нормальной изоляции C2 / C50 = 1,5 1,6, с ростом влажности стремится к 1.
- 2. Для нормальной изоляции C2 / C50 = 1,1 1,2, с ростом влажности стремится к 0,5.
- 3. Для нормальной изоляции C2 / C50 = 1,2 1,3, с ростом влажности возрастает.
- 4. Для нормальной изоляции C2 / C50 = 1,2 1,3, с ростом влажности не изменяется. N20 (Ларионов, § 19.3)

Что называется тангенсом угла диэлектрических потерь в изоляции?

- 1. Отношение емкостного тока в изоляции к активному току потерь в изоляции.
- 2. Отношение активного тока потерь в изоляции к емкостному току в изоляции.
- 3. Отношение активного тока потерь в изоляции к полному току в изоляции.
- 4. Отношение полного тока в изоляции к емкостному току в изоляции.

N21 (Ларионов, § 19.3)

Как изменяется тангенс угла диэлектрических потерь в изоляции с повышением температуры изоляции?

- 1. Тангенс не изменяется.
- 2. Тангенс уменьшается.
- 3. Тангенс возрастает.
- 4. Тангенс возрастает в диапазоне температур 20 60 °C, затем снижается.

N22 (Ларионов, § 19.3)

Как изменяется тангенс угла диэлектрических потерь в изоляции с увеличением частоты приложенного напряжения к изоляции?

- 1. Тангенс не изменяется.
- 2. Тангенс уменьшается, потери в изоляции снижаются.
- 3. Тангенс уменьшается, потери в изоляции возрастают.
- 4. Тангенс возрастает, потери в изоляции уменьшаются.

6.2.2.1.2 Критерии оценивания

Зачтено	Не зачтено	
результаты обучения соответствуют	результаты обучения не соответствуют	
основным требованиям отличные (или	основным требованиям, большая часть	
хорошие, или удовлетворительные)	материала не усвоена	
знания, умения и владения. Согласно		
разделам дисциплины.		

7 Основная учебная литература

- 1. Бабиков М. А. Техника высоких напряжений : учебное пособие для энергетических специальностей техникумов / М. А. Бабиков, Н. С. Комаров, А. С. Сергеев, 1963. 671.
- 2. Техника высоких напряжений : учебник для электроэнерг. спец. вузов / Под общ. ред. Д. В. Разевига, 1976. 488.

- 3. Важов В. Ф. Техника высоких напряжений: учебник для вузов по направлению подготовки 13.03.02 "Электроэнергетика и электротехника" (квалификация "бакалавр") / В. Ф. Важов, В. А. Лавринович, 2018. 260.
- 4. Чумаков Γ . И. Техника высоких напряжений : учебное пособие / Γ . И. Чумаков, И. Γ . Насникова, 2019. 197.

8 Дополнительная учебная литература и справочная

- 1. Долгинов Александр Иосифович. Техника высоких напряжений в электроэнергетике : учеб. пособие для втузов / Александр Иосифович Долгинов, 1968. 464.
- 2. Кучинский Георгий Станиславович. Изоляция установок высокого напряжения : учеб. для вузов по спец. "Техника и электрофизика высок. напряжений" / Георгий Станиславович Кучинский; Под общ. ред. Г. С. Кучинского, 1987. 367.
- 3. Изоляция воздушных линий и распределительных устройств в районах с загрязненной атмосферой: сб. науч. тр. НИИПТ / НИИ по передаче электроэнергии постоян. током высокого напряжения, 1983. 67.
- 4. Александров Г. Н. Изоляция электрических аппаратов высокого напряжения / Г. Н. Александров, В. Л. Иванов, 1984. 207.
- 5. Ушаков Василий Яковлевич. Изоляция установок высокого напряжения / Василий Яковлевич Ушаков, 1994. 494.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/
- 11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем
- 1. Microsoft Office 2003 VLK (поставки 2007 и 2008)

12 Материально-техническое обеспечение дисциплины

- 1. 15224 Ячейка ЭС-1т
- 2. 1371 Установка типа У-5011