Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Структурное подразделение «Электроснабжения и электротехники»

УТВЕРЖДЕНА:

на заседании кафедры электроснабжения и электротехники Протокол №12 от 18 июня 2025 г.

Рабочая программа дисциплины

«МАТЕМАТИЧЕСКИЕ ЗАДАЧИ ЭЛЕКТРОЭНЕРГЕТИКИ»					
Направление: 13.03.02 Электроэнергетика и электротехника					
Электроснабжение					
Квалификация: Бакалавр					
Форма обучения: очная					

Документ подписан простой электронной подписью Составитель программы: Свеженцева Ольга Владимировна Дата подписания: 05.06.2025

Документ подписан простой электронной подписью Утвердил: Шакиров Владислав Альбертович Дата подписания: 18.06.2025

Документ подписан простой электронной подписью Согласовал: Суслов Константин Витальевич Дата подписания: 09.06.2025

- 1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы
- 1.1 Дисциплина «Математические задачи электроэнергетики» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ПКС-2 Способность к выполнению работ по эксплуатаций оборудования и систем	ПКС-2.6
электроснабжения	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ПКС-2.6	Применяет для решения задач электроэнергетики современные методы математического моделирования и математического программирования	Знать Знать базовые понятия таких разделов математики как теория графов, численные методы решения систем линейных и нелинейных алгебраических уравнений; задача интерполирования и экстраполирования Уметь Уметь выявлять естественнонаучную сущность проблем Владеть Владеть математическими методами решения задач, возникающими в профессиональной деятельности

2 Место дисциплины в структуре ООП

Изучение дисциплины «Математические задачи электроэнергетики» базируется на результатах освоения следующих дисциплин/практик: «Математика», «Методы оптимизации в электроэнергетике», «Теоретические основы электротехники», «Цифровые технологии в энергетике»

Дисциплина является предшествующей для дисциплин/практик: «Интеллектуальные системы электроснабжения», «Надежность систем электроснабжения»

3 Объем дисциплины

Объем дисциплины составляет – 3 ЗЕТ

Вид учебной работы	Трудоемкость в академических часах (Один академический час соответствует 45 минутам астрономического часа)		
	Всего	Семестр № 6	
Общая трудоемкость дисциплины	108	108	
Аудиторные занятия, в том числе:	32	32	
лекции	16	16	
лабораторные работы	16	16	

практические/семинарские занятия	0	0	
Самостоятельная работа (в т.ч.	40	40	
курсовое проектирование)	40	40	
Трудоемкость промежуточной	36	36	
аттестации	30	30	
Вид промежуточной аттестации (итогового контроля по дисциплине)	Экзамен	Экзамен	

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр № 6

	II		Виды контактной работы					CDC		
No	Наименование	Лек	Лекции ЛР ПЗ(СЕМ)		пр пз(СЕМ) СРС		CPC		Форма	
п/п раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	текущего контроля	
1	2	3	4	5	6	7	8	9	10	11
1	Электроэнергетич еская система как объект математического описания и исследования	1, 2	4	1	4			1, 2,	8	Отчет по лаборатор ной работе
2	Теория графов в электроэнергетик е	3, 4	2					3	4	Решение задач
3	Методы расчета установившегося режима	5	2	2	3			1, 2	4	Отчет по лаборатор ной работе
4	Численные методы решения нелинейных алгебраических уравнений при анализе и расчете электрических сетей	6	3	3	3			1, 2, 3	8	Отчет по лаборатор ной работе
5	Численные методы решения дифференциальн ых уравнений 1-го порядка	7	3	4	3			1, 2,	8	Отчет по лаборатор ной работе
6	Применение методов теории вероятностей и математической статистики в электроэнергетик е	8	2	5	3			1, 2,	8	Отчет по лаборатор ной работе
	Промежуточная аттестация								36	Экзамен
	Всего		16		16				76	

4.2 Краткое содержание разделов и тем занятий

Семестр № 6

N₂	Тема	Краткое содержание		
1	Электроэнергетическая	Применение комплексных чисел при анализе		
	система как объект	электрических режимов. Векторные диаграммы		
	математического	режимных параметров электрической сети.		
	описания и	Использование матричной алгебры при расчете		
	исследования	режимов электрической сети. Законы Ома и		
		Кирхгофа в матричной форме.		
2	Теория графов в	Схема замещения электрической сети как связный		
	электроэнергетике	граф. Основные понятия и определения теории		
		графов. Матричное представление графов. Первая		
		и вторая матрицы инциденций. Обобщенное		
		уравнение состояния электрической сети и		
		способы его решения.		
3	Методы расчета	Точные и приближенные методы расчета		
	установившегося	установившегося режима. Методы Гаусса,		
	режима	Жордана- Гаусса. Итерационные методы расчета		
		установившихся режимов.		
4	Численные методы	Два этапа приближенного решения нелинейных		
	решения нелинейных	алгебраических уравнений: этап отделения корней,		
	алгебраических	этап уточнения корней. Метод деления отрезка		
	уравнений при анализе	пополам, метод Ньютона. Метод простой		
	и расчете	итерации. Исследование итерирующей функции на		
	электрических сетей	выполнения принципа сжатых отображений.		
5	Численные методы	Постановка задачи Коши. Метод Эйлера. Решение		
	решения	в форме таблицы. Метод Рунге -Кутта. Точность		
	дифференциальных	решения.		
	уравнений 1-го порядка			
6	Применение методов	Задача прогнозирования уровня		
	теории вероятностей и	электропотребления на промышленном		
	математической	предприятии. Уравнение линейной регрессии.		
	статистики в	Числовые характеристики случайных величин .		
	электроэнергетике			

4.3 Перечень лабораторных работ

Семестр № 6

No	Наименование лабораторной работы	Кол-во академических часов
1	Расчет в комплексном виде трехфазной электрической цепи, соединенной по схеме треугольник	4
2	Расчет установившегося режима замкнутой электрической сети.	3
3	Отделение и уточнение корней нелинейных алгебраических уравнений. Точность расчета	3
4	Расчет траектории движения во времени после возмущения. Реализация метода Эйлера.	3
5	Прогнозирование уровня электропотребления на промышленном предприятии	3

4.4 Перечень практических занятий

Практических занятий не предусмотрено

4.5 Самостоятельная работа

Семестр № 6

N₂	Вид СРС	Кол-во академических часов
1	Оформление отчетов по лабораторным и практическим работам	10
2	Подготовка к практическим занятиям (лабораторным работам)	10
3	Подготовка к экзамену	20

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: Видеоконференции

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по лабораторным работам:

Свеженцева О.В. Математические задачи электроэнергетики МУ и задания для выполнения курсовой работы / Свеженцева О.В. изд-во ИрГТУ 2010 г

5.1.2 Методические указания для обучающихся по самостоятельной работе:

Свеженцева О.В. Математические задачи электроэнергетики МУ и задания для выполнения курсовой работы / Свеженцева О.В. изд-во ИрГТУ 2010 г

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 семестр 6 | Отчет по лабораторной работе

Описание процедуры.

Описание процедуры: Для текущего (промежуточного) контроля успеваемости проводятся устные опросы, проверка отчетов по лабораторным работам.

Пример:

Опрос по теме предыдущего занятия, например, по Разделу 4 тема: Метод простой итерации решения нелинейного алгебраического уравнения Примерные вопросы:

- 1. Суть метода простой итерации.
- 2. Этап отделения корней в нелинейном алгебраическом уравнении.
- 3. Выделение значения неизвестного в правой части
- 4. Что означает выполнения принципа «сжатых отображений»?
- 5. Выбор начального приближения в методе простой итерации.
- 6. Условие выхода из итерационного процесса по методу простой итерации

Критерии оценивания.

Используется бальная система: за полностью исчерпывающий ответ - 5 баллов, с замечанием — 4 балла, не полный ответ — 3 балла, неправильный ответ - 2 балла, не способность обучающегося дать ответ — 1 балл.

6.1.2 семестр 6 | Решение задач

Описание процедуры.

Обучающиеся решает задачи, поставленные преподавателем во время опроса по теме:

- 1. Определение графа, орграфа.
- 2. Понятия вершина графа, ребро, дуга.
- 3. Изображение графа с помощью диаграмм.
- 4. Эквивалентные (изоморфные) графы.
- 5. Связность элементов графа, маршруты на графах.
- 6. Пути и контуры в орграфе.
- 7. Представление графов в компьютере.
- 8. Матрица смежности и ее применение.
- 9. Матрица инциденций и ее применение.
- 10. Массив дуг и его применение.
- 11. Схема замещения электрической сети как связный граф.
- 12. Основные понятия и определения теории графов.
- 13. Матричное представление графов. Первая и вторая матрицы инциденций.
- 14. Обобщенное уравнение состояния электрической сети и способы его решения Например, построить для заданного графа первую и вторую матрицы инциденций.

Критерии оценивания.

Используется бальная система: за полностью исчерпывающий ответ - 5 баллов, с замечанием — 4 балла, не полный ответ — 3 балла, неправильный ответ - 2 балла, не способность обучающегося дать ответ — 1 балл.

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
ПКС-2.6	1) полнота и правильность ответа;	Устное
	2) степень осознанности, понимания	собеседование по
	изученного;	теоретическим
	3) языковое оформление ответа.	вопросам и
	Оценка «отлично» ставится, если	выполнение
	студент полно излагает материал	лабораторных
	(отвечает на	работ ,
	вопрос), дает правильное определение	промежуточное

обнаруживает ОСНОВНЫХ понятий: понимание материала, может обосновать свои суждения, применить знания на практике, привести необходимые примеры не только из учебника, НО И самостоятельно составленные; излагает материал последовательно и правильно с точки зрения норм литературного языка. Оценка «хорошо» ставится, если студент дает ответ, удовлетворяющий требованиям, что и для оценки «отлично», но допускает 1–2 ошибки, которые сам же 1–2 исправляет, И недочета последовательности языковом оформлении излагаемого. Оценка «удовлетворительно» ставится, если студент обнаруживает знание понимание ОСНОВНЫХ положений данной темы, нот излагает материал неполно допускает неточности в определении понятий или формулировке правил; не умеет достаточно глубоко и доказательно обосновать свои суждения и привести примеры; излагает материал непоследовательно и допускает ошибки в языковом оформлении излагаемого. Оценка «неудовлетворительно» ставится, если обнаруживает студент большей незнание части соответствующего вопроса, допускает ошибки формулировке В определений и правил, искажающие их смысл, беспорядочно и неуверенно излагает материал.

тестирование

дисциплины.

различным темам

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 6, Типовые оценочные средства для проведения экзамена по дисциплине

6.2.2.1.1 Описание процедуры

Экзамен проходит в формате собеседования со студентом. К экзамену допускаются обучающие, которые выполнили все лабораторные работы. Оценивается понимание пройденного материала. Оценка производится по пятибалльной шкале. В случае невыполнения критерия оценивания назначается дата пересдачи, но не более 2 раз с последующим опросом по всем темам дисциплины.

Пример задания:

Два элемента XL и R соединены последовательно Комплексное сопротивление цепи Z при XL=30 Ом и R=40 Ом составляет..._

6.2.2.1.2 Критерии оценивания

Отлично	Хорошо	Удовлетворительн о	Неудовлетворительно
«Отлично» -	«Хорошо» -	«Удовлетворительно	«Неудовлетворительно
отличное	достаточно полное	» - приемлемое	» - результаты
понимание	понимание	понимание	обучения не
предмета,	предмета,	предмета,	соответствуют
всесторонние	хорошие знания,	удовлетворительные	минимальным
знания, отличные	умения и владения	знания, умения и	требованиям.
умения и		владения.	
владения.			

7 Основная учебная литература

- 1. Свеженцева О. В. Математические задачи электроэнергетики ФГОС_2018 : электронный курс / О. В. Свеженцева, 2022
- 2. Свеженцева О. В. Электротехника. Расчет электрических цепей и электрические машины : учебное пособие для студентов заочной формы специалитета / О. В. Свеженцева, М. О. Умнова, 2023. 132.
- 3. Свеженцева О. В. Расчет цепей переменного тока : практикум / О. В. Свеженцева, М. О. Умнова, 2022. 58.
- 4. Воропай Н. И. Теория систем для электроэнергетиков: учеб. пособие для электроэнергет. специальностей / Н. И. Воропай, 2000. 272.

8 Дополнительная учебная литература и справочная

- 1. Электрические станции, сети и системыМетоды оптимизации управления планированием больших систем энергетики. (Оптимизация развития и функционирования) / В. А. Веников, 1974. 207.
- 2. Методы оптимизации : сб. задач / Урал. гос. ун-т им. А. М. Горького, 1988. 96.
- 3. Кривилев А. В. Основы компьютерной математики с использованием системы MATLAB / Александр Кривилев, 2005. 483, [9].

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/
- 11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем
- 1. Microsoft Office 2007 Standard 2003 Suites и 2007 Suites поставка 2010
- 2. Microsoft Windows (XP Prof + Vista Bussines) rus VLK поставка 08_2008

12 Материально-техническое обеспечение дисциплины

- 1. проектор
- 2. персональные компьютеры