Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ **УНИВЕРСИТЕТ»**

Структурное подразделение «Электроснабжения и электротехники»

УТВЕРЖДЕНА:

на заседании кафедры электроснабжения и электротехники Протокол №12 от 18 июня 2025 г.

Рабочая программа дисциплины

«ФИЗИКА И ХИМИЯ ДИЭЛЕКТРИКОВ»				
Направление: 13.04.02 Электроэнергетика и электротехника				
Паправление. 13.04.02 Электроэнергетика и электротехника				
Оптимизация развивающихся систем электроснабжения				
Квалификация: Магистр				
Форма обучения: заочная				

Документ подписан простой электронной подписью Составитель программы: Потапов Василий Васильевич Дата подписания: 14.06.2025

Документ подписан простой электронной подписью Утвердил: Шакиров Владислав Альбертович

Дата подписания: 18.06.2025

электронной подписью Согласовал: Суслов Константин Витальевич

Документ подписан простой

Дата подписания: 14.06.2025

1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

1.1 Дисциплина «Физика и химия диэлектриков» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ПК-3 Способен решать инженерные задачи по	
конструированию, эксплуатации, техническому	ПК-3.12
обслуживанию, реконструкции оборудования.	
Выявлять технические и технологические недостатки	
ПК-4 Способен проектировать, производить расчёты	ПК-4.16
и выбирать оборудование систем электроснабжения	11K-4.10

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Содержание индикатора	Результат обучения
Знает назначение имеющихся показателей физических и химических свойств электротехнических материалов и как их интерпретировать на практике	Знать - назначение имеющихся показателей физических и химических свойств электротехнических материалов и как их интерпретировать на практике; - методы оценки физических и химических свойств способы улучшения физических и химических свойств; Уметь - проводить в практической деятельности (при наличии информационной базы) оценку возможностей использования физических и химических особенностей электротехнических материалов для производственных нужд; Владеть - способами определения качества физических и химических параметров электротехнических материалов.
Способен использовать основные физические и химические законы для выбора оптимальных схем и режимов технологии производства	Знать - основные физические и химические законы для выбора оптимальных схем и режимов технологий производства, переработки, эксплуатации и утилизации электротехнических материалов. Уметь - использовать основные физические и химические законы для выбора оптимальных схем и
	Знает назначение имеющихся показателей физических и химических свойств электротехнических материалов и как их интерпретировать на практике Способен использовать основные физические и химические законы для выбора оптимальных схем и режимов

переработки, эксплуатации и
утилизации электротехнических
материалов;
Владеть терминологией

2 Место дисциплины в структуре ООП

Изучение дисциплины «Физика и химия диэлектриков» базируется на результатах освоения следующих дисциплин/практик: «Монтаж, наладка и эксплуатация СЭС»

Дисциплина является предшествующей для дисциплин/практик: «Физика и техника высоких напряжений», «Производственная практика: преддипломная практика»

3 Объем дисциплины

Объем дисциплины составляет – 3 ЗЕТ

Совем длецииливы составляет		ь в акале	минеских насах			
D	Трудоемкость в академических часах (Один академический час соответствует 45 минутам астрономического часа)					
Вид учебной работы	Всего	Учебн ый год № 1	Учебный год № 2			
Общая трудоемкость дисциплины	108	36	72			
Аудиторные занятия, в том числе:	16	2	14			
лекции	6	2	4			
лабораторные работы	0	0	0			
практические/семинарские занятия	10	0	10			
Самостоятельная работа (в т.ч. курсовое проектирование)	88	34	54			
Трудоемкость промежуточной аттестации	4	0	4			
Вид промежуточной аттестации (итогового контроля по дисциплине)	, Зачет		Зачет			

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Учебный год № 1

	11	Виды контактной работы						CPC		Ф
No	Наименование	Лек	ции	Л	P	П3(0	CEM)	ن	PC	Форма
п/п	раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	No	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	классификация материалов;	1	1					1	34	Устный опрос
2	механические параметры;	2	1							Устный опрос

Промежуточн аттестация	ая					
Всего		2			34	

Учебный год **№** <u>2</u>

			Видь	і конта	ктной ра	аботы			D.C.	_
No	№ Наименование		Лекции		ЛР ПЗ(СЕМ)			CPC		Форма
п/п	раздела и темы дисциплины	No	Кол.	Nº	Кол.	N₂	Кол.	Nº	Кол.	текущего контроля
			Час.		Час.		Час.		Час.	_
1	2	3	4	5	6	7	8	9	10	11
1	физико- химические	1	1					1	54	Устный
	параметры									опрос
2	физика проводниковых материалов;	2, 3	2			4	1			Устный опрос
3	физика диэлектриков;	4	1			3, 5, 6	3			Устный опрос
4	поляризация;					7, 8	2			Устный опрос
5	электропроводнос					9, 10	2			Устный
	ть;					3, 10				опрос
6	диэлектрические потери;									Устный опрос
7	пробой газообразных и жидких диэлектриков;									Устный опрос
8	пробой и перекрытие твердых диэлектриков;									Устный опрос
9	строение и подвижность макромолекул									Устный опрос
10	синтез высокомолекуляр ных соединений;									Устный опрос
11	определение физических состояний полимеров;									Устный опрос
12	высокоэлостично е состояние; стеклообразное состояние; вязкотекучее состояние; технологические свойства и состав пластмасс.									Устный опрос
	Промежуточная аттестация								4	Зачет
	Всего		4				8		58	

4.2 Краткое содержание разделов и тем занятий

Учебный год № <u>1</u>

No	Тема	Краткое содержание			
1	классификация	Классификация электротротехнических			
	материалов;	материалов. Виды химической связи в			
		электротехнических материалах. Силы Ван-дер-			
		ваальсовской связи. Силы ионной связи.			
		Ковалентная связь. Силы металлической связи.			
		Водородная связь.			
2	механические	Механические параметры электротехнических			
	параметры;	материалов. Закон Гука. Механические			
		напряжения и деформации, понятие о			
		кристаллической структуре электротехнических			
		материалов. Точечные, линейные и объёмные			
		дефекты кристаллической структуры.			

Учебный год № <u>2</u>

N₂	Тема	Краткое содержание
1	физико-химические	Физико-химические параметры. Статистическая
	параметры	физика электронов- вырожденные и
		невырожденные состояния электронного газа в
		проводниковых полупроводниковых и
		диэлектрических материалах. Распределение
		Максвел-ла-Больцмана. Распределение Ферми-
		Дирака. Распределение Бозе-Эйнштейна.
2	физика проводниковых	Физика проводниковых материалов. Понятие об
	материалов;	электронах и дырках. Собственная и примесная
		электропроводность. Зонная энергетическая
		диаграмма металлов, полупроводников и
		диэлектриков. Понятие об энергетическом уровне
		Ферми. Излучательная и безизлучательная
		рекомбинация электронов и дырок.
3	физика диэлектриков;	Физика диэлектриков. Основные понятия физики
		диэлектриков. Органические и неорганические
		диэлектрики.
4	поляризация;	Поляризация. Поляризация диэлектриков.
		Электронная поляризация диэлектриков. Ионная
		поляризация диэлектриков. Дипольная
		поляризация диэлектриков. Неоднородная-
		междуслойная поляризация диэлектриков.
		Полярные и не полярные диэлектрики.
		Электрическое поле Лоренца. Сфера Лоренца
		Уравнение Клаузиуса-Мосотти для неполярных
		газов и жидкостей. Уравнение Клаузиуса-Мосотти
		для полярных жидкостей.
5	электропроводность;	Электропроводность. Электропроводность газов.
		Коэффициент ударной ионизации Таунсенда.
		Несамостоятельная электропроводность газов.
		Самостоятельная электропроводность газов.
		Электропроводность жидких диэлектриков.
		Явление электрофореза жидких диэлектриках.
		Электропроводность твёрдых диэлектриков.

		Электропроводность ионных кристаллов. Опыт
		1
		Тубандта. Электропроводность полимерных
		диэлектриков.
6	диэлектрические	Диэлектрические потери. Понятие о тангенсе
	потери;	угла диэлектрических потерь. Представление
		диэлектрических потерь с помощью
		последовательной и параллельной RC –цепочек.
7	пробой газообразных и	Пробой газообразных и жидких диэлектриков.
	жидких диэлектриков;	Виды пробоя диэлектриков. Электрический
		пробои. Тепловой пробои. Электрохимический
		пробои. Мостиковая теория пробоя
		трансформаторного масла.
8	пробой и перекрытие	Пробой и перекрытие твердых диэлектриков.
	твердых диэлектриков;	Влияние загрязнения поверхности на пробои и
		перекрытие твёрдых диэлектриков.
9	строение и	Строение и подвижность макромолекул.
	подвижность	Валентный угол, межатомное расстояние и
	макромолекул	подвижность полимерной цепи.
10	синтез	Синтез высокомолекулярных соединений.
	высокомолекулярных	Каталитический и некаталитический синтез
	соединений;	полиэтилена. Полиэтилен высокого давления -
		низкой плотности-ПЭВД. Полиэтилен низкого
		давления-высокой плотности-ПЭНД.
11	определение	физические состояния полимеров.
	физических состояний	
	полимеров;	
12	высокоэлостичное	Высокоэлостичное состояние. Стеклообразное
	состояние;	состояние. Вязкотекучее
	стеклообразное	состояние.Технологические свойства и состав
	состояние; вязкотекучее	пластмасс.
	состояние;	
	технологические	
	свойства и состав	
	пластмасс.	
	<u> </u>	

4.3 Перечень лабораторных работ

Лабораторных работ не предусмотрено

4.4 Перечень практических занятий

Учебный год № <u>2</u>

Nº	Темы практических (семинарских) занятий	Кол-во академических часов
1	Расчет энергии диполь-дипольного взаимодействия. Межмолекулярные силы взаимодействия.	1
2	Расчет электронной и ионной поляризуемости молекул диэлектрика.	1
3	Расчет энергии активации диэлектрической релаксации	1

4	Ток абсорбции в диэлектриках. Расчет поверхностной плотности заряда и постоянной	1
5	времени спадания тока Особенности диэлектрической релаксации в полимерных диэлектриках	1
6	Расчет электрической прочности диэлектриков.	1
7	Расчет напряжения перекрытия изоляторов (семинар)	1
8	Расчёт параметров частичных разрядов в полимерной изоляции.	1
9	Расчёт коэффициента ударной ионизации Таунсенда-	1
10	Выполнить расчёт для напряженности поля электрического газового коронного разряда - ЭГКР.	1

4.5 Самостоятельная работа

Учебный год № 1

No	Вид СРС	Кол-во академических часов
1	Проработка разделов теоретического материала	34

Учебный год № 2

	Nº	Вид СРС	Кол-во академических часов
1 1		Оформление отчетов по лабораторным и практическим работам	54

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: дискуссия

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по практическим занятиям

работа № 1

Расчет энергии диполь-дипольного взаимодействия. Межмолекулярные силы взаимодействия.

Цель занятия: Выполнить расчёт энергии диполь-дипольного взаимодеиствия. Задание на занятие: 1. Записать, формулу для энергии диполь- дипольного взаимодействия –(по указанию преподавателя подставить расчётную формулу размера межатомных расстояний).

работа № 2

Расчет электронной и ионной поляризуемости молекул диэлектрика.

Цель занятия: Выполнить расчёт электронной и ионной поляризуемости молекул диэлектрика.

Задание на занятие: Рассчитать электронную и ионную поляризуемость молекулы NaCl. работа № 3 Расчет энергии активации диэлектрической релаксации

Цель занятия: Выполнить расчёт энергии активации диэлектрической релаксации в полимерных диэлектриках.

Задание на занятие: Выполнить расчёт энергии активации диэлектрической релаксации в полиэтилене и поливинилхлориде.

работа № 4

Ток абсорбции в диэлектриках. Расчет поверхностной плотности заряда и постоянной времени спадания тока

Цель занятия: Определить поверхностную плотность абсорбированного заряда и постоянную времени релаксации абсорбционного тока в полимерном диэлектрике. Задание на занятие: Выполнить расчёт поверхностную плотность абсорбированного заряда и постоянную времени релаксации абсорбционного тока в полимерных диэлектриках- (ПЭ и ПВХ).

работа № 5

Особенности диэлектрической релаксации в полимерных диэлектриках

Цель занятия: Сравнить время релаксации абсорбционного заряда в высокоомных и низкоомных полимерных диэлектриках.

Задание на занятие: Выполнить расчёт времени релаксации абсорбционного заряда высокоомного- ПЭ и низкоомного-ПВХ.

работа № 6

Расчет электрической прочности диэлектриков.

Цель занятия: Определить электрическую прочность полиэтилена.

Задание на занятие: Выполнить расчёт электрической прочности полиэтилена. работа № 7

Расчет напряжения перекрытия изоляторов (семинар)

Цель занятия: Рассчитать напряжение перекрытия гирлянды изоляторов.

Задание на занятие: Выполнить расчёт напряжения перекрытия изоляторов. работа № 8

Расчёт параметров частичных разрядов в полимерной изоляции.

Цель занятия: Рассчитать кажущийся заряд и частоту следования ЧР.

Задание на занятие: Выполнить расчёт кажущегося заряда и частоты следования ЧР в полиэтиленовой кабельной изоляции.

работа № 9

Расчёт коэффициента ударной ионизации Таунсенда-.

Цель занятия: Рассчитать коэффициент ударной ионизации Таунсенда. .

Задание на занятие: Выполнить расчёт коэффициента ударной ионизации Таунсенда- на основании зависмости .

работа № 10

Выполнить расчёт для напряженности поля электрического газового коронного разряда - ЭГКР.

Цель занятия: Рассчитать напряженности поля электрического газового коронного разряда - ЭГКР для коронирующего провода.

Задание на занятие: Выполнить расчёт напряженности поля электрического газового коронного разряда - ЭГКР для коронирующего провода при нормальном атмосферном давлении-(диаметр провода выбрать по указанию преподавателя) работа N = 11

С помощью формулы Пика выполнить расчёт для напряженности поля электрического газового коронного разряда - ЭГКР

Цель занятия: Рассчитать напряженности поля электрического газового коронного разряда - ЭГКР для коронирующего провода.

Задание на занятие: Выполнить расчёт напряженности поля электрического газового коронного разряда - ЭГКР для коронирующего провода при пониженном атмосферном

давлении - (давление газа и диаметр провода выбрать по указанию преподавателя) работа № 12

С помощью закона Пашена выполнить расчёт пробивного напряжения воздуха при нормальном давлении.

Цель занятия: Рассчитать напряжение пробоя воздушного промежутка при нормальном давлении.

Задание на занятие: Выполнить расчёт напряжения пробоя воздушного промежутка при нормальном давлении.

работа № 13

Выполнить расчёт пробивного напряжения воздуха при пониженном давлении.

Цель занятия: Рассчитать напряжение пробоя воздушного промежутка при пониженном давлении.

Задание на занятие: Выполнить расчёт напряжения пробоя воздушного промежутка при пониженном давлении.

работа № 14

Рассчитать электретную разность потенциалов – Uэ абсорбционного заряда.

Цель занятия: Рассчитать электретную разность потенциалов — Uэ абсорбционного заряда в полиэтиленовой плёнке.

Задание на занятие: Выполнить расчёт электретную разность потенциалов — Uэ абсорбционного заряда в полиэтиленовой плёнке (толщина плёнки и поверхностная плотность абсорбционного заряда по указанию преподавателя). работа № 15

Рассчитать электретную разность потенциалов – Uэ абсорбционного заряда.

Цель занятия: Рассчитать электретную разность потенциалов – Uэ абсорбционного заряда в плёнке ПВХ .

Задание на занятие: Выполнить расчёт электретную разность потенциалов — Uэ абсорбционного заряда в плёнке ПВХ (толщина плёнки и поверхностная плотность абсорбционного заряда по указанию преподавателя). работа № 16

Рассчитать время релаксации для электретной разности потенциалов — Uэ абсорбционного заряда в полиэтилене.

Цель занятия: Рассчитать время релаксации для электретной разности потенциалов – Uэ абсорбционного заряда в полиэтилене

Задание на занятие: Выполнить расчёт времени релаксации для электретной разности потенциалов – Uэ абсорбционного заряда в полиэтилене работа № 17

Рассчитать время релаксации для электретной разности потенциалов – Uэ абсорбционного заряда в ПВХ.

Цель занятия: Рассчитать время релаксации для электретной разности потенциалов – Uэ абсорбционного заряда в ПВХ

Задание на занятие: Выполнить расчёт времени релаксации для электретной разности потенциалов – Uэ абсорбционного заряда в ПВХ.

5.1.2 Методические указания для обучающихся по самостоятельной работе:

Подготовка к практическим занятиям и лабораторным работам.

Подготовка к практическим занятиям заключается в самостоятельной теоретической подготовке студента по теме практического занятия с использованием методических пособий, учебной литературы.

Подготовка к лабораторным работам включает самостоятельную теоретическую подготовку к лабораторной работе, в том числе изучение описания лабораторной

установки (оборудования), составление краткого конспекта, подготовку таблиц измеряемых величин. Оформление отчетов по лабораторным работам. Отчет по лабораторной работе должен быть оформлен после выполнения лабораторной работы и должен быть представлен для защиты лабораторной работы.

- 2. Промежуточный контроль знаний проводится в виде тестирования, устных и письменных опросов и предусматривает предварительную работу студента с учебными материалами, конспектами лекций, с использованием теоретических) и практических материалов, а также дополнительной учебной литературы и ресурсов Интернета.
- 3. Самостоятельное изучение разделов курса включает в себя работу с источниками, которую необходимо начинать с ознакомительного чтения, т.е. просмотреть текст, выделяя его структурные единицы. При ознакомительном чтении закладками отмечаются те страницы, которые требуют более внимательного изучения. В зависимости от результатов ознакомительного чтения выбирается дальнейший способ работы с источником. Если для разрешения поставленной задачи требуется изучение некоторых фрагментов текста, то используется метод выборочного чтения. Избранные фрагменты или весь текст (если он целиком имеет отношение к рассматриваемым темам) требуют вдумчивого, неторопливого чтения с «мысленной проработкой» материала.
- 4. Подготовка к зачету, экзамену способствует закреплению знаний, полученных во время лекций, практических занятий и лабораторных работ. Для этого необходимо использовать контрольные вопросы, которые помогут выявить пробелы в знаниях по дисциплине.

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 учебный год 1 | Устный опрос

Описание процедуры.

выборочный устный опрос во время занятий

Критерии оценивания.

- 1) полнота и правильность ответа;
- 2) степень осознанности, понимания изученного;

При ответе в полном объеме, студент оценивается как «хорошо», при частичном (50% ответа) – «удовлетворительно», при отсутствии правильных ответов – «неудовлетворительно».

6.1.2 учебный год 2 | Устный опрос

Описание процедуры.

выборочный устный опрос во время занятий

Критерии оценивания.

- 1) полнота и правильность ответа;
- 2) степень осознанности, понимания изученного;

При ответе в полном объеме, студент оценивается как «хорошо», при частичном (50% ответа) – «удовлетворительно», при отсутствии правильных ответов –

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
ПК-3.12	Электротехнических и конструкционных материалов и их основные параметры, принцип функционирования электротехнических и конструкционных материалов, их типы и основные конструктивные и эксплуатационные характеристики, области применения. Умеет: определить оптимальный состав электротехнических и конструкционных материалов в зависимости от конструкции и назначения электротехнических устройств, а также провести расчет их основных характеристик. проводить в практической деятельности (при наличии информационной базы) оценку возможностей использования физических и химических особенностей электротехнических материалов для производственных нужд; ориентироваться, выбирая из множества показателей наиболее подходящие для исследуемого объекта и методы для расчёта этих	Устное собеседование по теоретическим вопросам и/или выполнение практического задания
ПК-4.16	показателей; знает: физические процессы электрического пробоя в различных средах, принципы выполнения и испытания изоляции высокого напряжения; умеет: формировать законченное представление о принятых решениях и полученных результатах в виде научно-технического отчета с его	Устное собеседование по теоретическим вопросам и/или выполнение практического задания

публичной	защитой;	
	владеет:	
навыками проведени	я стандартных	
испытаний электроэне	ергетического и	
электротехнического о	оборудования и	
систем; методами	испытаний	
электрической изоляци	И	

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Учебный год 2, Типовые оценочные средства для проведения зачета по дисциплине

6.2.2.1.1 Описание процедуры

Экзамен (зачет) по курсу проводятся в письменной или устной форме. Экзаменационный билет содержит теоретический вопрос и задачи. По теоретическому вопросу и каждой задаче выставляется оценка по пятибалльной системе.

Пример задания:

- классификация материалов;
- механические параметры;
- физико-химические параметры;
- физика проводниковых материалов;
- физика диэлектриков;
- поляризация;
- электропроводность;
- диэлектрические потери;
- пробой газообразных и жидких диэлектриков;
- пробой и перекрытие твердых диэлектриков;
- строение и подвижность макромолекул;
- синтез высокомолекулярных соединений;
- определение физических состояний полимеров;
- высокоэлостичное состояние;
- стеклообразное состояние;
- вязкотекучее состояние;
- технологические свойства и состав пластмасс.

6.2.2.1.2 Критерии оценивания

Зачтено	Не зачтено
результаты обучения соответствуют	результаты обучения не соответствуют
основным требованиям	основным требованиям, большая часть
	материала не усвоена

7 Основная учебная литература

1. Новиков Γ . К. Физика диэлектрических материалов : учебное пособие / Γ . К. Новиков, 2006. - 53.

- 2. Основы электротехнологий [Электронный ресурс] : методические указания по курсовому проектированию "Расчет основных параметров дуговых печей" / Иркут. гос. техн. ун-т; сост. Новиков Γ . К., Бардаков В. М. Ч. 1, 2001. 17.
- 3. Новиков Г. К. Плазменные электротехнологии сшивания и контроля дефектности полиолефиновой кабельной изоляции : монография / Г. К. Новиков, 2009. 135.
- 4. Новиков Γ . К. Электрические свойства полимеров [Электронный ресурс] : учебное пособие / Γ . К. Новиков, В. В. Потапов, К. В. Суслов, 2012. 79.
- 5. Новиков Γ . К. Диагностика кабельных линий : учебное пособие / Γ . К. Новиков, В. В. Потапов, К. В. Суслов, 2013. 51.

8 Дополнительная учебная литература и справочная

- 1. Новиков Г. К. Плазмофизические электротехнологии модификации полиолефиновой кабельной изоляции : монография / Г. К. Новиков, 2007. 103.
- 2. Новиков Г. К. Плазменные электротехнологии модификации и контроля дефектности полиолефиновой кабельной изоляции : монография / Г. К. Новиков, 2008. 119.
- 3. Новиков Γ . К. Кабельная изоляция и кабельная техника : учеб. пособие / Γ . К. Новиков, А. С. Жданов, С. И. Добрецкий, 2005. 153.
- 4. Новиков Г. К. Электротехнология синтеза озона : монография / Г. К. Новиков, В. В. Федчишин, 2011. 87.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/
- 11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем
- 1. Microsoft Office 2003 VLK (поставки 2007 и 2008)

12 Материально-техническое обеспечение дисциплины

- 1. 316452 Прибор УПУ-10
- 2. 5063Термокамера ТК-500
- 3. 15224 Ячейка ЭС-1т
- 4. 12541 Сушильный шкаф