Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Структурное подразделение «Электрических станций, сетей и систем»

УТВЕРЖДЕНА:

на заседании кафедры электрических станций, сетей и систем Протокол №7 от 10 марта 2025 г.

Рабочая программа дисциплины

«ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭЛЕКТРОЭНЕРГИИ»
Направление: 13.04.02 Электроэнергетика и электротехника
паправление. 15.04.02 Электроэнергетика и электротехника
Электрические станции, системы и сети
Квалификация: Магистр
Форма обучения: очная

Документ подписан простой электронной подписью

Составитель программы: Тигунцев Степан

Георгиевич

Дата подписания: 11.06.2025

Документ подписан простой электронной подписью

Утвердил и согласовал: Федосов Денис

Сергеевич

Дата подписания: 11.06.2025

- 1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы
- 1.1 Дисциплина «Возобновляемые источники электроэнергии» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ПК-1 Способен выполнять научные исследования и	
анализ нормальных и аварийных режимов работы	ПК-1.9
электрических станций, сетей и систем	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ПК-1.9	Выполняет анализ работы электрических систем с возобновляемыми источниками энергии	Знать основные нетрадиционные и возобновляемые источники электроэнергии Уметь анализировать работу электрических систем с возобновляемыми источниками энергии Владеть навыками расчётов параметров установок с возобновляемыми источниками электроэнергии

2 Место дисциплины в структуре ООП

Изучение дисциплины «Возобновляемые источники электроэнергии» базируется на результатах освоения следующих дисциплин/практик: «Современные проблемы электроэнергетики и электротехники», «Проблемы развития и функционирования ЭЭС в современных условиях», «Управление качеством электроэнергии»

Дисциплина является предшествующей для дисциплин/практик: «Автоматизированные системы управления технологическими процессами», «Управление ЭЭС в нормальных и аварийных режимах»

3 Объем дисциплины

Объем дисциплины составляет – 2 ЗЕТ

Вид учебной работы	Трудоемкость в академич (Один академический час со минутам астрономическ	ответствует 45
	Всего	Семестр № 2
Общая трудоемкость дисциплины	72	72
Аудиторные занятия, в том числе:	39	39
лекции	13	13
лабораторные работы	0	0
практические/семинарские занятия	26	26
Контактная работа, в том числе	0	0
в форме работы в электронной	0	0

информационной образовательной		
среде		
Самостоятельная работа (в т.ч.	33	33
курсовое проектирование)	33	აა
Трудоемкость промежуточной	0	0
аттестации	U	U
Вид промежуточной аттестации		
(итогового контроля по дисциплине)	Зачет	Зачет
	Jager	Jaget

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр № 2

	Наименование		Видь	і контаі	ктной ра	боты		C	PC	Форма
No		Лек	ции	Л	[P	П3(0	CEM)	C.	PC	Форма
п/п	раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Введение. Основные понятия и определения	1	2							Отчет
2	Ветроэнергетика	2	6			1, 2, 3, 4, 5	18	1, 2, 3	20	Отчет
3	Солнечная энергетика	3	5			6, 7	8	1, 2, 3	13	Отчет
	Промежуточная аттестация									Зачет
	Всего		13				26		33	

4.2 Краткое содержание разделов и тем занятий

Семестр № 2

N₂	Тема	Краткое содержание
1	Введение. Основные	Классификация возобновляемых источников
	понятия и определения	энергии и актуальность их развития
2	Ветроэнергетика	Ветроэнергетические установки и основные
		направления их развития. Классификация
		ветроэнергетических установок. Структура
		ветроэнергетических установок и характеристика
		элементов и систем ветроагрегата.
		Электрооборудование и электрические схемы
		ветроэнергетических установок. Аккумулирование
		электроэнергии электрохимическими
		накопителями (АКБ и суперконденсаторы).
		Повышение энергоэффективности и оптимизация
		режимов работы автономных ветроэнергетических
		установок. Сетевые ветроэнергетические
		установки.

3	Солнечная энергетика	Солнечное излучение и его потенциал.
		Фотоэлектрические преобразователи. Основные
		пути совершенствования и оценка экономической
		эффективности использования солнечных
		электростанций. Солнечные электростанции и
		особенности их применения в электроснабжении

4.3 Перечень лабораторных работ

Лабораторных работ не предусмотрено

4.4 Перечень практических занятий

Семестр № 2

Nº	Темы практических (семинарских) занятий	Кол-во академических часов
1	Расчет рабочих характеристик ветроколеса	4
2	Расчет статических характеристик при регулировании ветроколеса	4
3	Расчет зависимости мощности генератора от скорости ветра при постоянной частоте вращения	4
4	Исследование зависимостей напряжения, тока, мощности и частоты вращения ветрогенератора от скорости ветра на натурной модели ветроэнергетической установки	4
5	Определение количества электрической энергии, выработанной ветроэнергетической установкой	2
6	Исследование режимов работы автономной фотоэлектрической солнечной электростанции	4
7	Исследование характеристик фотоэлектрического модуля солнечной электростанции	4

4.5 Самостоятельная работа

Семестр № 2

N₂	Вид СРС	Кол-во академических часов
1	Подготовка к зачёту	4
2	Подготовка к практическим занятиям (лабораторным работам)	15
3	Расчетно-графические и аналогичные работы	14

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: разбор конкретных практических ситуаций

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по практическим занятиям

Перед каждым практическим занятием обучающиеся знакомятся с теоретическими сведениями по практической работе, которые содержатся в методических указаниях, конспектах лекций или раздаточных материалах. В начале каждой работы проводится устный опрос обучающихся. Практические работы проводятся в форме выполнения расчётных и аналитических работ.

По практическим работам обучающиеся готовят общий индивидуальный отчёт за семестр в печатном виде, в который включают расчётные работы и другие разделы по указанию преподавателя. Обучающиеся индивидуально защищают отчёт преподавателю на собеседовании, отвечая на контрольные вопросы и/или демонстрируя выполнение индивидуальных заданий.

5.1.2 Методические указания для обучающихся по самостоятельной работе:

Изучение дисциплины следует начинать с проработки данной рабочей программы, особое внимание уделяя целям и задачам, структуре и содержанию дисциплины.

По практическим работам обучающиеся готовят индивидуальные отчёты в письменном или печатном виде и готовятся к их защите. Контрольные вопросы к каждой работе содержатся в п. 6.1 данной рабочей программы. Защита проходит индивидуально в формате собеседования, где обучающиеся отвечают на вопросы преподавателя и/или защищают выполненные индивидуальные задания.

Проработка теоретических разделов курса выполняется по конспектам лекций и рекомендуемой литературе в соответствии с перечнем оценочных средств и контрольных вопросов, представленных в п. 6.2 данной рабочей программы.

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 семестр 2 | Отчет

Описание процедуры.

Проверка расчетно-графических работ. Вопросы для контроля:

- 1. Назовите какие существуют нетрадиционные возобновляемые источники энергии.
- 2. Достоинство и недостатки возобновляемых источников энергии.
- 3. По каким основным направлениям развивается современная ветроэнергетика?
- 4. Классификация ветроэнергетических установок (ВЭУ).
- 5. Достоинство и недостатки ветроэлектрических электрогенераторов с горизонтальной и вертикальной осью.
- 6. Назовите наиболее распространенные типы вертикально-осевых установок и их принцип действия.
- 7. Поясните конструкцию и принцип действия горизонтально-осевых ветроколес пропеллерного типа.
- 8. Приведите классификацию ветрогенераторов с горизонтальной осью.
- 9. Приведите структуру ветроэнергетических установок, характеристику элементов и систем ветроагрегата.
- 10. Классификация ветродвигателей их достоинства и недостатки.
- 11. Поясните, что представляет собой ветроприемное устройство?
- 12. Генераторы, применяемые в ВЭУ? Область их применения в зависимости от сети

электроснабжения.

- 13. Системы ориентации ветроприемного устройства
- 14. Системы регулирования и ограничения мощности ВЭУ.
- 15. Автономные системы энергоснабжения и их структура.
- 16. Классификация автономных систем электроснабжения в зависимости от применяемых генерирующих источников мощности.
- 17. Аккумулирование электроэнергии электрохимическими накопителями.
- 18. Достоинство и недостатки аккумуляторных батарей и суперконденсаторов.
- 19. Аккумуляторные батареи (АКБ) и их роль в автономных системах электроснабжения.
- 20. Суперконденсаторы и их назначение в автономных системах электроснабжения.
- 21. Устройство суперконденсатора и где перспективно их применение?
- 22. Инверторы и роль в системах электроснабжения в нетрадиционных источниках электроэнергии.
- 23. Способы повышения технико-экономических характеристик децентрализованных систем электроснабжения.
- 24. Оптимизация режимов работы ветроэлектрических установок.
- 25. Сетевые ветроэнергетические установки.
- 26. Солнечное излучение и его потенциал.
- 27. Фотоэлектрические преобразователи.
- 28. Принцип действия солнечных элементов (СЭ) и их конструкции.
- 29. Фотоэлектрические системы (ФС) и их структура.
- 30. Вольт-амперная характеристика солнечного модуля.
- 31. Что такое напряжение холостого хода Uxx и ток короткого замыкания Ікз?
- 32. Регуляторы зарядки-разрядки, назначение, работа.
- 33. Инверторы для систем с солнечными элементами.
- 34. Устройства слежения за солнцем.
- 35. Типы солнечных электростанций.
- 36. Солнечные электростанции, принцип работы, конструкции.
- 37. Основные пути совершенствования термодинамических СЭС.
- 38. Фотоэлектрические станции и их структура.

Критерии оценивания.

Зачтено: правильные ответы на не менее чем 60% вопросов для контроля. Не зачтено: неполные и/или неправильные ответы на менее чем 60% вопросов для контроля

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
ПК-1.9	Самостоятельно проводит анализ	Устное
	работы электрических систем с	собеседование на
	возобновляемыми источниками	зачёте,
	энергии, демонстрирует понимание	выполнение и
	назначения и принципов действия	защита отчётов по
	установок с возобновляемыми	практическим

|--|

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 2, Типовые оценочные средства для проведения зачета по дисциплине

6.2.2.1.1 Описание процедуры

Зачет проводится в виде устного опроса по теоретической части дисциплины.

Пример задания:

Вопросы к зачету:

- 1. Назовите, какие существуют нетрадиционные возобновляемые источники энергии.
- 2. Достоинство и недостатки возобновляемых источников энергии.
- 3. По каким основным направлениям развивается современная ветроэнергетика?
- 4. Классификация ветроэнергетических установок (ВЭУ).
- 5. Достоинства и недостатки ветроэлектрических электрогенераторов с горизонтальной и вертикальной осью.
- 6. Назовите наиболее распространенные типы вертикально-осевых установок и их принцип действия.
- 7. Поясните конструкцию и принцип действия горизонтально-осевых ветроколес пропеллерного типа.
- 8. Приведите классификацию ветрогенераторов с горизонтальной осью.
- 9. Приведите структуру ветроэнергетических установок, характеристику элементов и систем ветроагрегата.
- 10. Классификация ветродвигателей, их достоинства и недостатки.
- 11. Поясните, что представляет собой ветроприемное устройство?
- 12. Генераторы, применяемые в ВЭУ? Область их применения в зависимости от сети электроснабжения.
- 13. Системы ориентации ветроприемного устройства
- 14. Системы регулирования и ограничения мощности ВЭУ.
- 15. Автономные системы энергоснабжения и их структура.
- 16. Классификация автономных систем электроснабжения в зависимости от применяемых генерирующих источников мощности.
- 17. Аккумулирование электроэнергии электрохимическими накопителями.
- 18. Достоинство и недостатки аккумуляторных батарей и суперконденсаторов.
- 19. Аккумуляторные батареи (АКБ) и их роль в автономных системах электроснабжения.
- 20. Суперконденсаторы и их назначение в автономных системах электроснабжения.
- 21. Устройство суперконденсаторов. Где перспективно их применение?
- 22. Инверторы и роль в системах электроснабжения с нетрадиционными источниками электроэнергии.
- 23. Способы повышения технико-экономических характеристик децентрализованных систем электроснабжения.
- 24. Оптимизация режимов работы ветроэлектрических установок.
- 25. Сетевые ветроэнергетические установки.
- 26. Солнечное излучение и его потенциал.
- 27. Фотоэлектрические преобразователи.
- 28. Принцип действия солнечных элементов (СЭ) и их конструкции.

- 29. Фотоэлектрические системы (ФС) и их структура.
- 30. Вольт-амперная характеристика солнечного модуля.
- 31. Что такое напряжение холостого хода Uxx и ток короткого замыкания Ікз?
- 32. Регуляторы зарядки-разрядки, назначение, работа.
- 33. Инверторы для систем с солнечными элементами.
- 34. Устройства слежения за солнцем.
- 35. Типы солнечных электростанций.
- 36. Солнечные электростанции, принцип работы, конструкции.
- 37. Основные пути совершенствования термодинамических СЭС.
- 38. Фотоэлектрические станции и их структура.

6.2.2.1.2 Критерии оценивания

Зачтено	Не зачтено
Наличие способности использовать	Отсутствие способности использовать
углубленные теоретические и	углубленные теоретические и
практические знания, которые находятся	практические знания, которые находятся
на передовом рубеже науки и техники в	на передовом рубеже науки и техники в
области профессиональной деятельности и	области профессиональной деятельности и
принимать решения в области	принимать решения в области
электроэнергетики и электротехники с	электроэнергетики и электротехники с
учетом энерго- и ресурсосбережения.	учетом энерго- и ресурсосбережения.
Полное выполнение заданий по	Частичное выполнение или невыполнение
практическим занятиям.	заданий по практическим занятиям.

7 Основная учебная литература

- 1. Сибикин Ю. Д. Нетрадиционные и возобновляемые источники энергии : учебное пособие / Ю. Д. Сибикин, М. Ю. Сибикин, 2012. 227,[1].
- 2. Баскаков А. П. Нетрадиционные и возобновляемые источники энергии : учебник для студентов вузов по направлению подготовки 140100 "Теплоэнергетика и теплотехника" / А. П. Баскаков, 2013. 365.
- 3. Возобновляемые источники энергии: Теоретические основы, технологии, технические характеристики, экономика / Res Electricae Magdeburgenses Magdeburger Forum zur Elektrotechnik, 2010. 211.

8 Дополнительная учебная литература и справочная

- 1. Константинов Γ . Γ . Нетрадиционные и возобновляемые источники энергии : лабораторный практикум / Γ . Γ . Константинов, 2020. 131.
- 2. Нетрадиционные и возобновляемые источники энергии: учебное пособие при подготовке бакалавров по направлению 140000 "Энергетика, энергетическое машиностроение и электротехника", 022000 "Экология и природопользование" / В. В. Денисов [и др.]; под ред. В. В. Денисова, 2015. 318.
- 3. Баранов Н. Н. Нетрадиционные источники и методы преобразования энергии : учебное пособие для вузов по направлению "Электроэнергетика" специальности "Нетрадиционные и возобновляемые источники энергии" / Н. Н. Баранов, 2012. 383.
- 4. Дубровский В. А. Нетрадиционные и возобновляемые источники энергии : учебное пособие / В. А. Дубровский, 2011. 366.

5. Удалов С. Н. Возобновляемые источники энергии : учебное пособие для вузов по направлению подготовки 140400 "Электроэнергетика и электротехника", модуль "Электроэнергетика" / С. Н. Удалов, 2014. - 457.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/

11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем

- 1. Microsoft Windows Professional 8 Russian
- 2. Microsoft Office Professional Plus 2013

12 Материально-техническое обеспечение дисциплины

- 1. Экран с эл/приводом 180*180
- 2. мультимед.проектор ViewSonic PJ400
- 3. Компьютер P4 631/1646Gz/1024/120/3.5"/GF256/DVD-RW/ монитор Samsung940/кл/мышь
- 4. Доска магнитно-маркерная INDEX настенная ,размер 1х1.8 м