Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Структурное подразделение «Брикс кафедра»

УТВЕРЖДЕНА:

на заседании кафедры Протокол №<u>15</u> от <u>18 марта 2025</u> г.

Рабочая программа дисциплины

«МАТЕМАТИКА / MATHEMATICS»							
Направление: 05.03.06 Экология и природопользование							
11аправление. 03.03.00 Экология и природопользование							
Экология и охрана окружающей среды / Environmental Science Engineering							
Квалификация: Бакалавр							
Форма обучения: очная							

Документ подписан простой электронной подписью Составитель программы: Лемперт Анна Ананьевна Дата подписания: 11.06.2025

Документ подписан простой электронной подписью Утвердил: Киреенко Анна

Павловна

Дата подписания: 16.06.2025

Документ подписан простой электронной подписью Согласовал: Зелинская Елена

Валентиновна

Дата подписания: 11.06.2025

1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

1.1 Дисциплина «Математика / Mathematics» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ОПК ОС-1 Способен применять базовые знания	
естественнонаучного и математического циклов при	ОПК ОС-1.1, ОПК ОС-1.4, ОПК
решении задач в области экологии и	OC-1.6
природопользования	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
ОПК ОС-1.1	Использует принципы математического мышления, навыки употребления математической символики при решении практических задач	Знать Основные принципы математического мышления; основные математические символы, обозначения и их применение в различных разделах математики; основные математические понятия и термины; основные методы алгебры, геометрии и математического анализа. Уметь Формализовать условие задачи, используя математические символы и обозначения; корректно использовать математический язык и математический использовать типовые математические задачи. Владеть Навыками работы с математической символикой и терминологией; техниками преобразования текстовых условий в математические выражения. Навыками анализа и верификации полученных решений.
ОПК ОС-1.4	Анализирует и применяет навыки выбора методов решения задач на основе теоретических знаний, применяет основные математические методы, необходимые для анализа процессов при поиске оптимальных решений	Знать Основные математические методы: линейной алгебры, дифференциального и интегрального исчисления, обыкновенных дифференциальных уравнений. Уметь Формализовывать прикладные задачи в математических терминах, применять аппарат математического анализа к исследованию функций и процессов.

ОПК ОС-1.6	Применяет основные математические методы, необходимые для анализа процессов и явлений при поиске оптимальных решений, применяет приемы самообразования для использования математических методов в практической деятельности	Владеть Навыками аналитических вычислений (производные, интегралы, пределы); методами матричных вычислений и их приложений; навыками применения программных средств для решения типовых математических и прикладных задач. Знать основные методы и принципы математического моделирования, области их применения; методики исследования моделей; методы построения математических моделей типовых задач; методы математической обработки результатов решения задач Уметь Умеет самостоятельно применять математические методы и основы математического моделирования для решения практических задач, а также выбора корректного метода исследования научной задачи Владеть Навыками аналитических вычислений (производные, интегралы, пределы); методами матричных вычислений и их приложений; навыками применения программных средств для решения типовых математических и прикладных задач.
------------	---	--

2 Место дисциплины в структуре ООП

Изучение дисциплины «Математика / Mathematics» базируется на результатах освоения следующих дисциплин/практик: Нет

Дисциплина является предшествующей для дисциплин/практик: «Инженерная и компьютерная графика / Engineering and Computer Graphics», «Проектная деятельность / Project Development Practicum», «Экологическая геохимия и ресурсоведение / Environmental geochemistry and resource science»

3 Объем дисциплины

Объем дисциплины составляет – 10 ЗЕТ

Вид учебной работы	Трудоемкость в академических часах (Один академический час соответствует 45 минутам						
	Всего	срономи Сем естр	ического часа) Семестр № 2	Семес тр №			

		Nº 1		3
Общая трудоемкость дисциплины	360	108	108	144
Аудиторные занятия, в том числе:	172	48	64	60
лекции	78	16	32	30
лабораторные работы	0	0	0	0
практические/семинарские занятия	94	32	32	30
Самостоятельная работа (в т.ч. курсовое проектирование)	152	60	44	48
Трудоемкость промежуточной аттестации	36	0	0	36
Вид промежуточной аттестации (итогового контроля по дисциплине)	Зачет, Экзамен	Заче т	Зачет	Экзам ен

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр № 1

	Наименование		Виды контактной работы						PC	Форма
No		Лек	Лекции		ЛР Г		ПЗ(СЕМ)		PC	Форма
п/п	раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	N₂	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Линейная алгебра	1, 2	4			1, 2, 3, 4	8	1, 2, 3	16	Тест
2	Векторная алгебра	3	2			5, 6	6	1, 2, 3	10	Устный опрос
3	Аналитическая геометрия	4	2			7, 8	6	1, 2, 3	12	Устный опрос
4	Введение в математический анализ	5, 6, 7	8			9, 10, 11, 12	12	1, 2, 3	22	Тест
	Промежуточная аттестация									Зачет
	Всего		16				32		60	

Семестр **№** <u>2</u>

N₂	Наименование	Лоу	Виды контактной работы Лекции ЛР ПЗ(СЕМ)						PC	Форма
п/п	раздела и темы дисциплины	No	ции Кол. Час.	Nº	Кол. Час.	N ₂	Кол. Час.	Nº	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Дифференциальн ое исчисление функции одной переменной	1	8			1, 2, 3, 4	8	1, 2, 3	12	Проверочн ая работа
2	Дифференциальн	2	8			5, 6,	8	1, 2,	12	Проверочн

	ое исчисление функции нескольких переменных				7, 8		3		ая работа
3	Интегральное исчисление функции одной переменной	3, 4	8		9, 10, 11, 12	8	1, 2, 3	12	Проверочн ая работа
4	Обыкновенные дифференциальн ые уравнения	5	8		13, 14, 15	8	1, 2, 3	8	Проверочн ая работа
	Промежуточная аттестация								Зачет
	Всего		32			32		44	

Семестр **№** <u>3</u>

	11		Видь	і контаі	ктной ра	аботы		<u> </u>	PC	Φ
N₂	Наименование	Лек	ции	Л	[P	П3(0	CEM)	l C.	PC	Форма
п/п	раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	Nº	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Теория рядов	1	10			1, 2, 3, 4, 5	10	1, 2, 3	16	Проверочн ая работа
2	Интегральное исчисление функции нескольких переменных	2	8			6, 7, 8	8	1, 2, 3	18	Проверочн ая работа
3	Элементы теории функций комплексного переменного	3	12			9, 10, 11, 12	12	1, 2, 3	14	Проверочн ая работа
	Промежуточная аттестация								36	Экзамен
	Всего		30				30		84	

4.2 Краткое содержание разделов и тем занятий

Семестр № 1

No	Тема	Краткое содержание
1	Линейная алгебра	Матрицы и действия над ними. Определители и их
		свойства. Обратная матрица. Определитель
		матрицы п-го порядка. Ранг матрицы. Решение
		систем линейных алгебраических уравнений.
		Исследование систем линейных алгебраических
		уравнений. Системы однородных линейных
		уравнений.
2	Векторная алгебра	Понятие (определение) вектора, операции над
		векторами, базис векторов. Скалярное, векторное,
		смешанное произведения векторов.
3	Аналитическая	Уравнения прямой на плоскости. Полярные
	геометрия	координаты точки. Уравнения прямой и плоскости
		в пространстве. Взаимное расположение
		плоскости и прямой.

4	Введение в	Комплексные числа. Функция одного
	математический анализ	независимого переменного. Предел числовой
		последовательности, предел функции. Предел
		функции на бесконечности и бесконечные
		пределы. Бесконечно малые и бесконечно большие
		функции. Непрерывность функции.
		Односторонняя непрерывность.Точки разрыва
		функции и их классификация. Свойства функций,
		непрерывных на отрезке.

Семестр **№** <u>2</u>

N₂	Тема	Краткое содержание
1	Дифференциальное	Определение производной. Дифференциал
	исчисление функции	функции и его свойства. Производные и
	одной переменной	дифференциалы высших порядков. Основные
		теоремы дифференциального исчисления. Правило
		Лопиталя. Исследование функции и построение
		графика.
2	Дифференциальное	Функция нескольких переменных. Частные
	исчисление функции	производные. Полный дифференциал. Скалярное
	нескольких переменных	поле. Линии и поверхности уровня. Производная
	_	по направлению. Градиент. Производные сложной
		и неявной функций. Уравнения касательной
		плоскости и нормали к поверхности. Локальный и
		условный экстремумы функции двух переменных.
		Наибольшее и наименьшее значения функции двух
		переменных в некоторой области.
3	Интегральное	Неопределенный интеграл и его свойства.
	исчисление функции	Основные методы интегрирования.
	одной переменной	Интегрирование рациональных дробей.
		Интегрирование иррациональных функций и
		некоторых тригонометрических выражений.
		Определенный интеграл и его вычисление.
		Приложения определенного интеграла.
		Несобственные интегралы.
4	Обыкновенные	Основные виды дифференциальных уравнений
	дифференциальные	первого порядка и методы их решения.
	уравнения	Дифференциальные уравнения высших порядков.
		Уравнения, допускающие понижение порядка.
		Линейные однородные дифференциальные
		уравнения высших порядков. Линейные
		неоднородные дифференциальные уравнения
		высших порядков.

Семестр № <u>3</u>

No	Тема	Краткое содержание
1	Теория рядов	Числовые ряды, основные понятия и определения.
		Признаки сходимости знакоположительных
		числовых рядов. Знакопеременные и
		знакочередующиеся числовые ряды. Абсолютная и

		_	
		условная сходимость. Функциональные и	
		степенные ряды, их свойства. Область сходимости	
		степенного ряда. Ряды Тейлора и Маклорена.	
		Приближенные вычисления при помощи	
		степенных рядов. Ряды Фурье.	
2	Интегральное	Двойные интегралы, их свойства и вычисления.	
	исчисление функции	Тройные интегралы, их свойства и вычисления.	
	нескольких переменных	Криволинейные интегралы первого рода.	
		Криволинейные интегралы второго рода.	
3	Элементы теории	Основные понятия и определения. Основные	
	функций комплексного	элементарные функции комплексного	
	переменного	переменного. Дифференцируемость и	
		аналитичность функции комплексного	
		переменного. Интегрирование функции	
		комплексного переменного. Ряды в комплексной	
		плоскости.	

4.3 Перечень лабораторных работ

Лабораторных работ не предусмотрено

4.4 Перечень практических занятий

Семестр № 1

N₂	Темы практических (семинарских) занятий	Кол-во академических часов
1	Действия с матрицами и определителями	2
2	Нахождение обратной матрицы. Ранг матрицы	2
3	Решение систем линейных алгебраических уравнений	2
4	Исследование систем на совместность. Методы решения систем однородных уравнений	2
5	Операции над векторами, разложение вектора по базису	2
6	Вычисление и приложения скалярного, векторного и смешанного произведений векторов	4
7	Уравнения прямой на плоскости. Построение прямых. Нахождение полярных координат точки.	2
8	Уравнения плоскости. Построение плоскостей. Прямая в пространстве	4
9	Комплексные числа и действия над ними	2
10	Функции: область определения, область значений, четность, нечетность, периодичность	2
11	Предел последовательности. Вычисление пределов функций.	6
12	Исследование функции на непрерывность. Точки разрыва функции и их классификация. Асимптоты	2

Семестр **№** <u>2</u>

No	Темы практических (семинарских) занятий	Кол-во академических часов
1	Производные элементарных и сложных функций	2
2	Дифференциал функции. Производные и дифференциалы высших порядков	2
3	Вычисление пределов функций при помощи правила Лопиталя	2
4	Исследование функции и построение графика.	2
5	Частные производные функции двух переменных	2
6	Линий уровня. Производная по направлению и градиент функции двух переменных.	2
7	Производные сложной и неявной функции двух и трех переменных	2
8	Исследование функции на локальный и условный экстремум	2
9	Непосредственное интегрирование, интегрирование при помощи замены переменной и по частям	2
10	Интегрирование рациональных дробей, некоторых видов иррациональностей и тригонометрических выражений	2
11	Вычисление определенного интеграла. Нахождение площадей плоских фигур и объемов тел вращения	2
12	Вычисление несобственных интегралов первого и второго рода	2
13	Решение дифференциальных уравнений первого порядка	4
14	Решение дифференциальных уравнений высших порядков, допускающих понижение порядка	2
15	Линейные однородные дифференциальные уравнения высших порядков. Линейные однородные и неоднородные дифференциальные уравнения высших порядков	2

Семестр № <u>3</u>

N₂	Темы практических (семинарских) занятий	Кол-во академических часов
1	Признаки сходимости знакоположительных числовых рядов	2
2	Исследование знакочередующихся числовых рядов на абсолютную и условную сходимость	2
3	Нахождение областей сходимости степенных рядов	2
4	Разложение функций в ряды Тейлора и Маклорена	2

5	Применение рядов для вычисление определенных интегралов, значений функции в точке, пределов, решения дифференциальных уравнений	2
6	Вычисление двойных интегралов	2
7	Вычисление тройных интегралов	2
8	Вычисление криволинейных интегралов первого и второго рода	4
9	Нахождение действительной и мнимой части ФКП	2
10	Дифференцируемость и аналитичность ФКП	4
11	Интегрирование ФКП	4
12	Вычеты функции	2

4.5 Самостоятельная работа

Семестр № 1

N₂	Вид СРС	Кол-во академических часов
1	Подготовка к зачёту	14
2	Подготовка к практическим занятиям	20
3	Проработка разделов теоретического материала	26

Семестр № 2

N₂	Вид СРС	Кол-во академических часов
1	Подготовка к зачёту	8
2	Подготовка к практическим занятиям	22
3	Проработка разделов теоретического материала	14

Семестр № 3

N₂	Вид СРС	Кол-во академических часов
1	Подготовка к практическим занятиям	18
2	Подготовка к экзамену	10
3	Проработка разделов теоретического материала	20

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: Отдельные занятия по курсу могут проводиться в форме активного практического обучения: лекции с ошибками, вебинара, публичной презентации, выездных занятий с посещением организаций и мероприятий для получения новых знаний и/или повторения материала на практике. При проведении таких занятий преподаватель выступает в качестве помощника и координатора процесса, передавая активную функцию обучения студентам. Он же регулирует процесс посредством подготовки специальных заданий, проведения консультаций, оценки знаний, умений и навыков, предоставления обратной связи. Помимо получения знаний активные практические занятия развивают коммуникативные навыки, учат студентов работать в команде, решать проблемы.

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по практическим занятиям

Слайды к лекциям и дополнительные материалы находятся на странице курса https://el.istu.edu/course/view.php?id=3658

Перед каждым занятием необходимо:

- изучить конспект лекций и рекомендованную литературу по теме;
- разобрать основные определения и теоремы.

5.1.2 Методические указания для обучающихся по самостоятельной работе:

Самостоятельная работа обучающихся направлена на углубление и закрепление знаний, полученных на лекциях и других видах занятий, выработку навыков самостоятельного приобретения новых, дополнительных знаний, подготовку к предстоящим учебным занятиям и промежуточной аттестации.

Основными видами самостоятельной работы являются: работа с печатными источниками информации (конспектом, учебником, задачником), с презентациями лекций, а также, при необходимости, с информационно-справочными системами.

В ходе лекций и (или) занятий семинарского типа обучающийся ведет конспект кратко, схематично, последовательно с фиксированием основных положений, выводами, формулировками, обобщениями, помечает важные мысли, выделяет ключевые слова, термины. Для закрепления знаний после занятия рекомендуется перечитать материал и записать вопросы, которые не ясны из прочитанного. По этим вопросам необходимо обратится к учебной литературе и, если в результате работы с учебной литературой остались вопросы – следует обратиться за разъяснениями к преподавателю.

При подготовке к практическим занятиям обучающемуся необходимо повторить лекционный материал по теме занятия: изучить основную литературу, ознакомиться с дополнительной литературой, учесть рекомендации преподавателя.

При подготовке к контрольной работе обучающемуся необходимо повторить лекционный материал по теме занятия, а также самостоятельно провести решение серии типовых задач, используя материалы, полученные в ходе практических занятий.

Слайды к лекциям и дополнительные материалы находятся на странице курса https://el.istu.edu/course/view.php?id=3658

Дополнительные практические задания находятся на странице преподавателя на ресурсе Khan Academy

https://www.khanacademy.org/

- 6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине
- 6.1 Оценочные средства для проведения текущего контроля
- 6.1.1 семестр 1 | Устный опрос

Описание процедуры.

Преподаватель проводит устный опрос студентов по следующим вопросам.

Список вопросов по теме "Векторная алгебра"

- 1. Что такое вектор? Чем он отличается от скаляра?
- 2. Какие векторы называются коллинеарными? Компланарными?
- 3. Как определить равенство векторов?
- 4. Что такое нулевой вектор? Какими свойствами он обладает?
- 5. Что такое модуль вектора? Как он вычисляется?
- 6. Как выполняется сложение векторов (правило треугольника, правило параллелограмма)?
- 7. Какие свойства имеет операция сложения векторов?
- 8. Как выполняется умножение вектора на скаляр? Каков геометрический смысл?
- 9. Что такое противоположный вектор? Как его построить?
- 10. Как выполняется вычитание векторов?
- 11. Что такое линейная комбинация векторов? Линейная зависимость и независимость?
- 12. Что такое базис на плоскости и в пространстве?
- 13. Как разложить вектор по базису?
- 14. Как найти координаты вектора в заданной системе координат?
- 15. Как выполняются линейные операции над векторами в координатной форме?
- 16. Что такое скалярное произведение векторов? Как вычисляется?
- 17. Каков геометрический смысл скалярного произведения?
- 18. Какие свойства имеет скалярное произведение?
- 19. Как определить угол между векторами с помощью скалярного произведения?
- 20. Как проверить ортогональность векторов?
- 21. Что такое векторное произведение векторов? Как вычисляется?
- 22. Каков геометрический смысл векторного произведения?
- 23. Какие свойства имеет векторное произведение?
- 24. Что такое смешанное произведение векторов? Как вычисляется?
- 25. Каков геометрический смысл смешанного произведения?
- 26. Как найти площадь параллелограмма и треугольника с помощью векторного произведения?
- 27. Как найти объем параллелепипеда и тетраэдра с помощью смешанного произведения?
- 28. Как записать уравнение прямой на плоскости с помощью векторов?
- 29. Как записать уравнение плоскости в пространстве с помощью векторов?
- 30. Какие задачи физики и механики решаются с помощью векторной алгебры?

Список вопросов по теме "Аналитическая геометрия"

- 1. Какие существуют виды уравнений прямой на плоскости (общее, каноническое, параметрическое, уравнение с угловым коэффициентом)?
- 2. Как найти угол между двумя прямыми?
- 3. Как определить взаимное расположение двух прямых (параллельность, перпендикулярность, пересечение)?
- 4. Как найти расстояние от точки до прямой?
- 5. Какие существуют виды уравнений плоскости (общее, нормальное, уравнение в отрезках)?
- 6. Как найти расстояние от точки до плоскости?
- 7. Как определить взаимное расположение двух плоскостей (параллельность, перпендикулярность, угол между плоскостями)?

- 8. Как найти уравнение плоскости, проходящей через три заданные точки?
- 9. Какие существуют виды уравнений прямой в пространстве (каноническое, параметрическое, общее)?
- 10. Как определить взаимное расположение двух прямых в пространстве (параллельность, скрещивание, пересечение)?
- 11. Как найти расстояние между двумя прямыми в пространстве?
- 12. Как найти угол между прямой и плоскостью?

Критерии оценивания.

Тема считается сданной, если предложенные задания выполнены правильно в полном объеме, а обучающийся демонстрирует знание теоретического материала, необходимого для выполнения работ.

Ответ оценивается по следующим критериям:

- 1. Полнота ответа (0-4 балла)
- 4 балла полный, исчерпывающий ответ с деталями и примерами
- 3 балла ответ охватывает основные аспекты, но есть незначительные пробелы
- 2 балла ответ содержит только ключевые положения без детализации
- 1 балл затронуты лишь отдельные элементы вопроса
- 0 баллов ответ отсутствует или полностью неверный
- 2. Точность терминологии (0-2 балла)
- 2 балла безупречное использование специальной терминологии
- 1 балл незначительные терминологические неточности
- 0 баллов грубые ошибки в терминах или их отсутствие
- 3. Логичность изложения (0-2 балла)
- 2 балла четкая, последовательная структура ответа
- 1 балл небольшие нарушения логики изложения
- 0 баллов отсутствие логической структуры
- 4. Глубина понимания (0-2 балла)
- 2 балла демонстрация глубокого понимания темы
- 1 балл понимание основных положений
- 0 баллов отсутствие понимания сути вопроса

Шкала оценивания:

Отлично (9–10 баллов) – ответ полный, точный, логичный, с примерами и обоснованием.

Хорошо (7–8 баллов) – ответ в целом верный, но есть небольшие недочеты.

Удовлетворительно (5–6 баллов) – ответ поверхностный, но основные моменты затронуты.

Неудовлетворительно (0–4 балла) – ответ не раскрывает вопрос или содержит грубые ошибки.

6.1.2 семестр 1 | Тест

Описание процедуры.

Текущий контроль проводится в форме тестовых заданий после проведения практических занятий по конкретной теме. Тестовые задания представлены в виде "множественный выбор".

Линейная алгебра:

https://el.istu.edu/mod/quiz/view.php?id=378368

Введение в математический анализ:

https://el.istu.edu/mod/quiz/view.php?id=387924

Критерии оценивания.

Тест считается пройденным, если студент верно ответил на 60% и более процентов вопросов.

6.1.3 семестр 2 | Проверочная работа

Описание процедуры.

Студент письменно выполняет типовую проверочную работу в соответствии с индивидуальным вариантом. Время выполнения - 90 минут.

Дифференциальное исчисление функции одной переменной: https://el.istu.edu/mod/assign/view.php?id=399096

Интегральное исчисление функции одной переменной:

https://el.istu.edu/mod/assign/view.php?id=209109

Обыкновенные дифференциальные уравнения:

https://el.istu.edu/mod/quiz/view.php?id=240392

Критерии оценивания.

Работа считается выполненной, если студент верно решил на 60% и более процентов задач.

6.1.4 семестр 3 | Проверочная работа

Описание процедуры.

Студент письменно выполняет типовую проверочную работу в соответствии с индивидуальным вариантом. Время выполнения - 90 минут.

Теория рядов:

- 1. Исследовать сходимость ряда, используя необходимый признак сходимости (например, общий член ряда задан дробно-рациональной функцией).
- 2. Проверить сходимость ряда с помощью признака сравнения (предельного или обычного) (например, ряд с общим членом в виде дроби с корнем).
- 3. Применить признак Даламбера или радикальный признак Коши для исследования сходимости (например, ряд с факториалами и степенями).
- 4. Исследовать сходимость знакочередующегося ряда с помощью признака Лейбница (например, ряд с дробно-линейным общим членом).
- 5. Определить, сходится ли знакочередующийся ряд абсолютно или условно (например, ряд с логарифмом в числителе).
- 6. Найти область сходимости функционального ряда (например, степенной ряд с коэффициентом, зависящим от номера).
- 7. Разложить функцию в степенной ряд в окрестности нуля (например, дробнорациональную функцию).

8. Найти радиус и интервал сходимости степенного ряда (например, ряд с центром в точке, отличной от нуля).

Интегральное исчисление функций нескольких переменных:

- 1. Вычисление двойного интеграла в прямоугольных координатах.
- 2. Замена порядка интегрирования в повторном интеграле.
- 3. Переход к полярным координатам для вычисления двойного интеграла.
- 4. Приложения двойных интегралов (площадь, масса, объём).
- 5. Вычисление тройного интеграла в декартовых координатах.
- 6. Переход к цилиндрическим и сферическим координатам.
- 7. Приложения тройных интегралов (масса, объём, центр масс).
- 8. Вычисление криволинейных интегралов первого рода (по длине дуги).
- 9. Вычисление криволинейных интегралов второго рода (по координатам).
- 10. Применение криволинейных интегралов (работа силы, вычисление массы дуги).
- 11. Вычисление поверхностных интегралов первого рода (по площади поверхности).
- 12. Вычисление поверхностных интегралов второго рода (поток векторного поля).
- 13. Применение формулы Грина для вычисления циркуляции.
- 14. Использование теоремы Стокса для преобразования интегралов.
- 15. Применение теоремы Остроградского-Гаусса для вычисления потока.

Элементы теории функций комплексного переменного:

- 1. Даны два комплексных числа. Найти их сумму, разность, произведение и частное.
- 2. Представить комплексное число в алгебраической, тригонометрической и показательной формах.
- 3. Вычислить значение степени или корня из комплексного числа.
- 4. Для заданной функции найти её действительную и мнимую части.
- 5. Проверить, является ли функция аналитической (удовлетворяет ли условиям Коши-Римана).
- 6. Найти производную функции комплексного переменного.
- 7. Вычислить интеграл по заданной гладкой кривой от функции комплексного переменного.
- 8. Применить интегральную теорему Коши для вычисления интеграла.
- 9. Вычислить интеграл с помощью теоремы о вычетах.

Критерии оценивания.

Работа считается выполненной, если студент верно решил на 60% и более процентов задач.

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критерии оценивания	Средства (методы) оценивания промежуточной аттестации
ОПК ОС-1.1	Сформированность каждой	Уровень
	компетенции в рамках освоения	сформированност
	данной дисциплины оценивается по	и каждой

	трехуровневой шкале:	иомпотоннии на
		компетенции на
	- пороговый уровень является	различных этапах
	обязательным для всех обучающихся	ее формирования
	по завершении освоения дисциплины;	в процессе
	- продвинутый уровень	освоения
	характеризуется превышением	дисциплины
	минимальных характеристик	оценивается в
	сформированности компетенции по	ходе текущего
	завершении освоения дисциплины;	контроля
	- эталонный уровень	успеваемости
	характеризуется максимально	различными
	возможной выраженностью	видами
	компетенции и является важным	оценочных
	качественным ориентиром для	средств:
	самосовершенствования.	оценка работы у
	cumocobepimener bobarribri	доски на
	При достаточном качестве освоения	практических
	более 80% приведенных знаний,	занятиях,
	умений и навыков преподаватель	· ·
	I -	оценка
	оценивает освоение данной	выполнения
	компетенции в рамках настоящей	заданий на
	дисциплины на эталонном уровне, при	практических
	освоении более 60% приведенных	занятиях,
	знаний, умений и навыков – на	проверочные
	продвинутом, при освоении более 40%	работы,
	приведенных знаний, умений и	тесты.
	навыков - на пороговом уровне. В	
	противном случае компетенция в	
	рамках настоящей дисциплины	
	считается неосвоенной.	
ОПК ОС-1.4	Сформированность каждой	Уровень
	компетенции в рамках освоения	сформированност
	данной дисциплины оценивается по	и каждой
	трехуровневой шкале:	компетенции на
	- пороговый уровень является	различных этапах
	обязательным для всех обучающихся	ее формирования
	по завершении освоения дисциплины;	в процессе
	- продвинутый уровень	освоения
	характеризуется превышением	дисциплины
	минимальных характеристик	оценивается в
	сформированности компетенции по	ходе текущего
	завершении освоения дисциплины;	контроля
	- эталонный уровень	успеваемости
	характеризуется максимально	различными
	возможной выраженностью	видами
	компетенции и является важным	оценочных
	· ·	·
	1	средств:
	самосовершенствования.	оценка работы у
	При постаточном узучества осрезуют	доски на
	При достаточном качестве освоения	практических
	более 80% приведенных знаний,	занятиях,

	умений и навыков преподаватель оценивает освоение данной компетенции в рамках настоящей дисциплины на эталонном уровне, при освоении более 60% приведенных знаний, умений и навыков — на продвинутом, при освоении более 40% приведенных знаний, умений и навыков - на пороговом уровне. В противном случае компетенция в рамках настоящей дисциплины считается неосвоенной.	практических занятиях, проверочные работы, тесты.
ОПК ОС-1.6	Сформированность каждой компетенции в рамках освоения данной дисциплины оценивается по трехуровневой шкале: - пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины; - продвинутый уровень характеристик сформированности компетенции по завершении освоения дисциплины; - эталонный уровень характеристик сформированности компетенции по завершении освоения дисциплины; - эталонный уровень характеризуется максимально возможной выраженностью компетенции и является важным качественным ориентиром для самосовершенствования. При достаточном качестве освоения более 80% приведенных знаний, умений и навыков преподаватель оценивает освоение данной компетенции в рамках настоящей дисциплины на эталонном уровне, при освоении более 60% приведенных знаний, умений и навыков — на продвинутом, при освоении более 40% приведенных знаний, умений и навыков — на продвинутом, при освоении более 40% приведенных знаний, умений и навыков — на продвинутом случае компетенция в рамках настоящей дисциплины считается неосвоенной.	сформированност и каждой компетенции на различных этапах ее формирования в процессе освоения дисциплины оценивается в ходе текущего контроля успеваемости различными видами оценочных средств: оценка работы у доски на практических занятиях, оценка

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 1, Типовые оценочные средства для проведения зачета по дисциплине

6.2.2.1.1 Описание процедуры

Зачет проводится устно по билетам, включающим теоретические вопросы дисциплины и практические задачи. Билет состоит из двух теоретических вопросов и двух практических задач.

Список вопросов:

- 1. Определение вектора и его отличие от скалярной величины.
- 2. Коллинеарные и компланарные векторы.
- 3. Правила сложения векторов: правило треугольника и правило параллелограмма.
- 4. Умножение вектора на скаляр и его геометрический смысл.
- 5. Базис векторного пространства и разложение вектора по базису.
- 6. Скалярное произведение векторов и его вычисление в координатной форме.
- 7. Определение угла между векторами с использованием скалярного произведения.
- 8. Векторное произведение векторов и его вычисление в координатной форме.
- 9. Вычисление площади параллелограмма с помощью векторного произведения.
- 10. Смешанное произведение векторов и его связь с объемом параллелепипеда.
- 11. Уравнение прямой на плоскости в векторной форме.
- 12. Уравнение плоскости в пространстве в векторной форме.
- 13. Функции, способы задания. Элементарные функции.
- 14. Последовательность, монотонность и ограниченность. Предел последовательности. Теоремы о пределах последовательности.
- 15. Предел функции в точке по Коши и по Гейне. Предел функции на бесконечности.
- 16. Предел суммы, произведения, частного функций. Теорема о пределе промежуточной функции.
- 17. Бесконечно малые функции и их свойства.
- 18. Бином Ньютона.
- 19. Замечательные пределы.
- 20. Сумма и произведение бесконечно малой и ограниченной функций.
- 21. Эквивалентные бесконечно малые, таблица.
- 22. Непрерывность функции в точке.
- 23. Односторонние пределы и односторонняя непрерывность. Классификация точек разрыва.
- 24. Свойства функций, непрерывных на отрезке.

6.2.2.1.2 Критерии оценивания

Зачтено	Не зачтено	
выставляется студенту, который показал	выставляется студенту, который не	
знания основного учебного материала, но	владеет знаниями основного учебного	
возможно допустил погрешности в ответе	материала, допускает грубые ошибки и не	
на вопросы, но обладающему	имеет достаточной подготовки для их	
необходимыми знаниями для их	исправления с помощью преподавателя	
устранения под руководством		
преподавателя		

6.2.2.2 Семестр 2, Типовые оценочные средства для проведения зачета по дисциплине

6.2.2.2.1 Описание процедуры

Зачет проводится устно по билетам, включающим теоретические вопросы дисциплины и практические задачи. Билет состоит из двух теоретических вопросов и двух практических задач.

Список вопросов

- 1. Производная, геометрический и механический смысл. Уравнение касательной и нормали к кривой.
- 2. Дифференцируемость, дифференциал. Критерий дифференцируемости. Непрерывность дифференцируемой функции.
- 3. Дифференцирование суммы, произведения, частного. Дифференцирование основных элементарных функций.
- 4. Дифференцирование сложной функции. Инвариантность формы дифференциала. Дифференцирование обратной функции.
- 5. Дифференцирование обратных тригонометрических функций.
- 6. Производные высших порядков. Формула Лейбница.
- 7. Параметрическое задание функций. Дифференцирование функций, заданных параметрически. Гиперболические функции.
- 8. Теоремы Ферма, Ролля.
- 9. Теоремы Лагранжа, Коши.
- 10. Правило Лопиталя. Сравнение роста степенной, логарифмической и показательной функций.
- 11. Теорема Тейлора. Формула Тейлора с остаточным членом в форме Пеано и Лагранжа. Формула Тейлора для основных элементарных функций.
- 12. Монотонные функции. Достаточное условие монотонности.
- 13. Экстремумы. Необходимое условие экстремума. Достаточное условие экстремума.
- 14. Выпуклость. Достаточное условие выпуклости.
- 15. Точки перегиба. Необходимое условие перегиба. Достаточное условие перегиба.
- 16. Асимптоты. Их нахождение.
- 17. Первообразная. Неопределенный интеграл и его свойства.
- 18. Таблица интегралов. Замена переменных и интегрирование по частям в неопределенном интеграле.
- 19. Интегрирование рациональных функций.
- 20. Интегрирование дробно-линейных и квадратичных иррациональностей.
- 21. Интегрирование рациональных функций от синуса и косинуса. Универсальная тригонометрическая подстановка.
- 22. Определенный интеграл, определение и свойства.
- 23. Теорема о дифференцировании интеграла по верхнему пределу. Формула Ньютона-Лейбница.
- 24. Замена переменной и интегрирование по частям в определенном интеграле.
- 25. Вычисление с помощью определенного интеграла площадей плоских фигур.
- 26. Вычисление объема тела вращения и длины кривой.
- 27. Несобственные интегралы 1 и 2 рода. Их вычисление. 13. Производная, геометрический и механический смысл. Уравнение касательной и нормали к кривой.
- 28. Дифференцируемость, дифференциал. Критерий дифференцируемости. Непрерывность дифференцируемой функции.
- 29. Дифференцирование суммы, произведения, частного. Дифференцирование основных элементарных функций.
- 30. Дифференцирование сложной функции. Инвариантность формы дифференциала. Дифференцирование обратной функции.
- 31. Дифференцирование обратных тригонометрических функций.
- 32. Производные высших порядков. Формула Лейбница.

- 33. Параметрическое задание функций. Дифференцирование функций, заданных параметрически. Гиперболические функции.
- 34. Теоремы Ферма, Ролля.
- 35. Теоремы Лагранжа, Коши.
- 36. Правило Лопиталя. Сравнение роста степенной, логарифмической и показательной функций.
- 37. Теорема Тейлора. Формула Тейлора с остаточным членом в форме Пеано и Лагранжа. Формула Тейлора для основных элементарных функций.
- 38. Монотонные функции. Достаточное условие монотонности.
- 39. Экстремумы. Необходимое условие экстремума. Достаточное условие экстремума.
- 40. Выпуклость. Достаточное условие выпуклости.
- 41. Точки перегиба. Необходимое условие перегиба. Достаточное условие перегиба.
- 42. Асимптоты. Их нахождение.
- 43. Первообразная. Неопределенный интеграл и его свойства.
- 44. Таблица интегралов. Замена переменных и интегрирование по частям в неопределенном интеграле.
- 45. Интегрирование рациональных функций.
- 46. Интегрирование дробно-линейных и квадратичных иррациональностей.
- 47. Интегрирование рациональных функций от синуса и косинуса. Универсальная тригонометрическая подстановка.
- 48. Определенный интеграл, определение и свойства.
- 49. Теорема о дифференцировании интеграла по верхнему пределу. Формула Ньютона-Лейбница.
- 50. Замена переменной и интегрирование по частям в определенном интеграле.
- 51. Вычисление с помощью определенного интеграла площадей плоских фигур.
- 52. Вычисление объема тела вращения и длины кривой.
- 53. Несобственные интегралы 1 и 2 рода. Их вычисление.
- 54. Функции нескольких переменных: определение, предел, непрерывность, частные производные, полный дифференциал, уравнение касательной плоскости и нормали к поверхности.

6.2.2.2. Критерии оценивания

Зачтено	Не зачтено	
выставляется студенту, который показал	выставляется студенту, который не	
знания основного учебного материала, но	владеет знаниями основного учебного	
возможно допустил погрешности в ответе	материала, допускает грубые ошибки и не	
на вопросы, но обладающему	имеет достаточной подготовки для их	
необходимыми знаниями для их	исправления с помощью преподавателя	
устранения под руководством		
преподавателя		

6.2.2.3 Семестр 3, Типовые оценочные средства для проведения экзамена по дисциплине

6.2.2.3.1 Описание процедуры

Студент подготавливает письменный ответ на 3 теоретических вопроса из следующего списка и решает 2 задачи. Время выполнения - 90 минут.

Список вопросов:

- 1. Двойные и тройные интегралы, вычисление в декартовых координатах.
- 2. Замена переменных в кратных интегралах, вычисление в полярных, цилиндрических, сферических координатах.
- 3. Числовой ряд, сходимость, сумма. Геометрический ряд. Обобщенный гармонический ряд. Необходимый признак сходимости.
- 4. Достаточные признаки сходимости знакоположительных рядов (теоремы сравнения, признаки Даламбера, Коши, интегральный).
- 5. Знакопеременные ряды. Абсолютная и условная сходимости. Признак Лейбница.
- 6. Функциональные ряды. Область сходимости.
- 7. Степенной ряд. Теорема Абеля. Интервал и радиус сходимости.
- 8. Свойства степенных рядов.
- 9. Ряд Тейлора. Разложение элементарных функций.
- 10. Ортогональные системы функций. Тригонометрический ряд. Ряд Фурье. Условия Дирихле, теорема Дирихле. Ряд Фурье для четных и нечетных функций.
- 11. Криволинейные интегралы 1 и 2 рода. Формула Грина.
- 12. Скалярное поле. Градиент и производная по направлению. Векторное поле. Поток векторного поля. Формула Остроградского-Гаусса.
- 13. Циркуляция векторного поля. Ротор. Формула Стокса.
- 14. Комплексные числа, действия в алгебраической форме. Геометрическая интерпретация, тригонометрическая и показательная форма. Действия в тригонометрической форме, формула Муавра, извлечение корней.
- 15. Функции комплексного переменного (ФКП), их геометрический смысл.
- 16. Дифференцирование ФКП, аналитичность. Условия Коши-Римана.
- 17. Элементарные функции и их свойства.
- 18. Комплексный интеграл, его вычисление. Интегральная теорема Коши. Интегральная формула Коши.
- 19. Ряд Тейлора в комплексной области. Ряд Лорана.
- 20. Изолированные особые точки, их классификация.
- 21. Полюс, вычеты, вычисление вычетов. Основная теорема о вычетах.
- 22. Теорема Коши о вычетах. Вычисление интегралов с помощью вычетов.

6.2.2.3.2 Критерии оценивания

Отлично	Хорошо	Удовлетворительн о	Неудовлетворительно
Дан полный,	Даны	Дан недостаточно	Ответ на вопрос
развернутый ответ	относительно	полный и	складывается из
на поставленные	полные ответы на	недостаточно	разрозненных знаний.
вопросы. Ответ	поставленные	развернутый ответ.	Студентом допущены
имеет четкую	вопросы. Ответ	Нарушены	существенные ошибки.
структуру,	изложен	логичность и	Изложение материала
изложен	достаточно	последовательность	нелогичное,
грамотным	последовательно,	изложения	фрагментарное.
языком с	грамотным	материала.	Дополнительные и
использованием	языком с	Допущены ошибки в	уточняющие вопросы
терминологии.	использованием	употреблении	преподавателя не
Могут быть	терминологии.	терминов,	приводят к коррекции
допущены 2-3	Могут быть	определении	ответа.
недочета или	допущены	понятий.	Задачи не решены.
неточности,	заметные	Задачи решены не	
исправленные	недочеты или	полностью, с	
студентом с	неточности,	большим	

помощью	частично	количеством	
преподавателя.	исправленные	замечаний	
Задачи решены	студентом с	преподавателя.	
полностью без	помощью		
замечаний.	преподавателя.		
	Задачи решены		
	полностью, но с		
	замечаниями		
	преподавателя.		

7 Основная учебная литература

- 1. Ильин. Математический анализ, 2007. 660.
- 2. Виноградова Ирина Андреевна. Математический анализ в задачах и упражнениях : учеб. пособие для вузов / Ирина Андреевна Виноградова, С.Н. Олехник, В.А. Садовничий, 1991. 352.
- 3. Практическое руководство к решению задач по высшей математике : линейная алгебра, векторная алгебра, аналитическая геометрия, введение в математический анализ, производная и ее приложения : учебное пособие / И. А. Соловьев [и др.], 2009. 319.
- 4. Варден ван дер Б. Л. Алгебра [Электронный ресурс] / Б. Л. Варден ван дер ; пер. с нем. А. А. Бельский ; ред. Ю. И. Мерзляков, 1979. 623.
- 5. Резниченко С. В. Аналитическая геометрия в примерах и задачах: (Алгебраические главы): учебное пособие для вузов по физ.-мат. специальностям / С. В. Резниченко, 2001. 573.
- 6. Егоров Александр Иванович. Обыкновенные дифференциальные уравнения с приложениями / А. И. Егоров, 2007. 448.
- 7. Половинкин Е. С. Курс лекций по теории функций комплексного переменного : курс лекций / Е. С. Половинкин, 2003. 203.

8 Дополнительная учебная литература и справочная

- 1. Справочное пособие по высшей математике : в 5 т. Т. 1 : Математический анализ: введение в анализ, производная, интеграл : задачи, решения / И. И. Ляшко [и др.], 2001. 358.
- 2. Справочное пособие по высшей математике : в 5 т. Т. 3 : Математический анализ: кратные и криволинейные интегралы : задачи, решения / И. И. Ляшко [и др.], 2001. 224.
- 3. Справочное пособие по высшей математике : в 5 т. Т. 4 : Функции комплексного переменного: теория и практика : задачи, решения / А. К. Боярчук, 2001. 349.
- 4. Справочное пособие по высшей математике : в 5 т. Т. 5 : Дифференциальные уравнения в примерах и задачах: : задачи, решения / А. К. Боярчук, Г. П. Головач, 2001. 349.
- 5. Справочное пособие по высшей математике : В 5 т. Т. 2 : Математический анализ: ряды, функции векторного аргумента / И. И. Ляшко [и др.], 2003. 222.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/
- 3. https://www.khanacademy.org/
- 4. https://www.mathprofi.ru
- 5. https://el.istu.edu

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/
- 11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем
- 1. Microsoft Windows Seven Professional (Microsoft Windows Seven Starter) Seven, Vista, XP_prof_64, XP_prof_32 поставка 2010
- 2. Microsoft Office Standard 2010_RUS_ поставка 2010 от ООО "Азон"

12 Материально-техническое обеспечение дисциплины

- 1. Учебная аудитория для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации комплект учебной мебели, рабочее место преподавателя, мультимедийное оборудование, доска.
- 2. Учебная аудитория для проведения проведения практических (семинарских) занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестции. Компьютерный класс от 15 до 25 компьютеров, объединенных в локальную сеть для выполнения работ. Мультимедийное оборудование (в том числе переносное): мультимедийный проектор, экран с электроприводом, акустическая система + ПК с выходом в Internet. Комплект мебели, доска, маркер или мел.