Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ **УНИВЕРСИТЕТ»**

Структурное подразделение «Брикс кафедра»

УТВЕРЖДЕНА:

на заседании кафедры Протокол №15 от 18 марта 2025 г.

Рабочая программа дисциплины

«ПЕРЕХОДНЫЕ ПРОЦЕССЫ / TRANSIENT PROCESSES»
Направление: 13.03.02 Электроэнергетика и электротехника
Современные технологии электроэнергетики / Power Electrical Engineering
Квалификация: Бакалавр
Форма обучения: очная

Документ подписан простой электронной подписью Составитель программы: Карамов Дмитрий Николаевич Дата подписания: 05.06.2025

Документ подписан простой электронной подписью Утвердил: Киреенко Анна

Павловна

Дата подписания: 10.06.2025

Документ подписан простой электронной подписью Согласовал: Карамов Дмитрий Николаевич Дата подписания: 05.06.2025

- 1 Перечень планируемых результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы
- 1.1 Дисциплина «Переходные процессы / Transient Processes» обеспечивает формирование следующих компетенций с учётом индикаторов их достижения

Код, наименование компетенции	Код индикатора компетенции
ПКС-2 Способность к выполнению работ по	
эксплуатации современного оборудования и систем	ПКС-2.5, ПКС-2.6
электроснабжения с большой долей генераций	11KC-2.5, 11KC-2.6
возобновляемых источников и накопителей	

1.2 В результате освоения дисциплины у обучающихся должны быть сформированы

Код индикатора	Содержание индикатора	Результат обучения
пкс-2.5	Демонстрирует знания об особенностях установившихся и переходных режимов и их взаимосвязи	Знать методы и критерии анализа статической и динамической устойчивости электроэнергетических систем; основные мероприятия по обеспечению статической и динамической устойчивости, повышению качества переходных процессов и экономичности мероприятий; основы теории электромеханических переходных процессов в электроэнергетических системах и их основных элементах. Уметь выполнять оценку статической и динамической устойчивости простейших электроэнергетических систем; использовать современные программно-вычислительные комплексы для расчета статической и динамической устойчивости сложных электроэнергетических систем; выбрать мероприятия и обосновать их применение для обеспечения и повышения статической и динамической устойчивости электроэнергетических систем. Владеть методами анализа статической и динамической устойчивости электроэнергетических систем.
ПКС-2.6	Составляет расчетные схемы и выполнить расчеты токов коротких замыканий в ЭЭС	Знать основные правила для составления схем замещения для элементов электроэнергетических

систем; оборудования участвующее
при расчете электрических систем и
сетей; способы для уменьшения
значений токов короткого
замыкания.
Уметь производить расчеты
основных параметров для схем
замещения элементов
электроэнергетических систем.
Владеть методиками для
формирования расчетных схем для
определения токов короткого
замыкания. Навыками для анализа
полученных результатов расчета
токов короткого замыкания.

2 Место дисциплины в структуре ООП

Изучение дисциплины «Переходные процессы / Transient Processes» базируется на результатах освоения следующих дисциплин/практик: «Введение в профессиональную деятельность / Introduction into Professional Activities», «Общая энергетика / General Energy Issues», «Теоретические основы электротехники / Theoretical Foundations of Electrical Engineering», «Электротехнологическое и конструкционное материаловедение / Electrotechnological and Structural Materials Science», «Надежность электроэнергетических систем / Reliability of electric power systems», «Цифровые технологии в энергетике / Digital Technologies and Measuring Equipment in Energy», «Основы электроснабжения / Basics of Electricity Supply», «Энергоснабжение / Energy Supply», «Электроэнергетические системы и сети / Electric Power Systems and Networks»

Дисциплина является предшествующей для дисциплин/практик: «Релейная защита систем электроснабжения / Relay Protection of Power Supply Systems», «Системы электроснабжения / Power Supply Systems», «Монтаж, наладка и эксплуатация систем электроснабжения / Installation, Commissioning and Operation of Power Supply Systems», «Электрический привод и электротехнологическое оборудование / Electric Drive and Electrical Equipment», «Производственная практика: эксплуатационная практика / Company Internship 3», «Производственная практика: преддипломная практика / Undergraduate Practice»

3 Объем дисциплины

Объем дисциплины составляет – 7 ЗЕТ

/ / _ /	_								
	Трудоемкость в академических часах								
	(Один академическі	(Один академический час соответствует 45 минутам							
Вид учебной работы	астро	номическ	ого часа)						
	Всего	Семес	COMOCER No. 6						
	DCel 0	тр № 5	Семестр № 6						
Общая трудоемкость	252	108	144						
дисциплины	232	100	144						
Аудиторные занятия, в том	99	45	54						
числе:	33	43	J 4						
лекции	66	30	36						
лабораторные работы	18	0	18						

практические/семинарские занятия	15	15	0
Контактная работа, в том числе	0	0	0
в форме работы в электронной информационной образовательной среде	0	0	0
Самостоятельная работа (в т.ч. курсовое проектирование)	117	63	54
Трудоемкость промежуточной аттестации	36	0	36
Вид промежуточной аттестации (итогового контроля по дисциплине)	Зачет, Экзамен, Курсовой проект	Зачет	Экзамен, Курсовой проект

4 Структура и содержание дисциплины

4.1 Сводные данные по содержанию дисциплины

Семестр № <u>5</u>

	II		Видь	і конта	ктной ра	боты		<u> </u>	DC	Ф
N₂	Наименование	Лек	ции		IP		CEM)		PC	Форма
п/п	раздела и темы дисциплины	Nº	Кол. Час.	Nº	Кол. Час.	No	Кол. Час.	Nº	Кол. Час.	текущего контроля
1	2	3	4	5	6	7	8	9	10	11
1	Общие сведения об электромагнитны х переходных процессах.	1	2			1	1	2	4	Устный опрос
2	Виды коротких замыканий и общая характеристика.	2	2			2	1	2	4	Устный опрос
3	Расчетные схемы замещения и их преобразование.	3	4			3	2	2	4	Устный опрос
4	Переходные процессы в трёхфазных электрических цепях, подключенных к источнику синусоидального напряжения.	4	4			4	1	1, 2	7	Устный опрос
5	Расчет трёхфазного короткого замыкания в начальный и произвольный моменты времени при удалённых	5	2			5	2	2	4	Устный опрос

	коротких замыканиях.								
6	Расчет установившегося тока трёхфазного короткого замыкания при отсутствии автоматического регулирования и при наличии АВР генераторов.	6	2		6	2	2	4	Устный опрос
7	Расчет периодической составляющей тока короткого замыкания методом типовых кривых.	7	4		7	1	2	4	Устный опрос
8	Расчёт токов короткого замыкания в сетях напряжением до 1 кВ.	8	4		8	1	2	4	Устный опрос
9	Несимметричные короткие замыкания.	9	4		9	2	2	4	Устный опрос
10	Правило эквивалентности прямой последовательнос ти.	10	2		10	2	2	4	Устный опрос
11	Решение задач по всем разделам дисциплины.						3	10	Решение задач
12	Решение специальных задач повышенной сложности.						3	10	Решение задач
	Промежуточная аттестация								Зачет
	Всего		30			15		63	

Семестр **№** <u>6</u>

	Harmanananan		Видь	ы контаі	ктной ра	боты		C	PC	Форуга
No	Наименование	Лек	ции	Л	ſΡ	П3(0	CEM)	C.	PC	Форма
п/п	раздела и темы дисциплины	N₂	Кол.	Nº	Кол.	No	Кол.	Nº	Кол.	текущего контроля
	_	_	Час.	_	Час.	_	Час.	_	Час.	_
1	2	3	4	5	6	7	8	9	10	11
1	Схема замещения и векторная диаграмма синхронного генератора для анализа электромагнитны х переходных процессов.	1	2	1	2			2	2	Устный опрос
2	Уравнение	2	2					2	2	Устный

	механического движения ротора								опрос
	генератора.								опрос
3	Угловые характеристики мощности.	3	2				2	2	Устный опрос
4	Понятие динамической устойчивости.	4	2				2	2	Устный опрос
5	Способ площадей, допущения и область применения.	5	2				2	2	Устный опрос
6	Метод последовательны х интервалов.	6	2				2	2	Устный опрос
7	Задачи и методы исследования статической устойчивости ЭЭС.	7	4	2	3		1, 2	4	Устный опрос
8	Виды нарушения устойчивости ЭЭС.	8	2				2	2	Устный опрос
9	Регулирование возбуждения, его задачи.	9	2	3	2		2	2	Устный опрос
10	Переходные процессы в узлах нагрузки ЭЭС. Задачи исследования.	10	4	5	2		2	2	Устный опрос
11	Практические критерии для узлов комплексных нагрузок.	11	2	6	2		2	2	Устный опрос
12	Поведение нагрузки при больших возмущениях.	12	2	7	2		2	2	Устный опрос
13	Асинхронные режимы в ЭЭС.	13	4	8	3		1, 2	4	Устный опрос
14	Причины и характер изменения частоты в ЭЭС.	14	2				2	2	Устный опрос
15	Определение динамических характеристик частоты в системе.	15	2				2	2	Устный опрос
16	Решение задач по всем разделам дисциплины.						3	10	Решение задач
17	Решение специальных задач повышенной сложности.						3	10	Решение задач

Промежуточная аттестация				36	Экзамен, Курсовой проект
Всего	36	16		90	

4.2 Краткое содержание разделов и тем занятий

Семестр № $\underline{5}$

N₂	Тема	Краткое содержание
1	Общие сведения об электромагнитных переходных процессах.	Введение. Причины возникновения переходных режимов в энергосистемах. Виды переходных процессов: электромагнитные и механические. Необходимость исследования возникающих несимметричных режимов на подстанциях и в электрических сетях. Допущения при расчете переходных процессов. Понятие металлического короткого замыкания.
2	Виды коротких замыканий и общая характеристика.	Общие сведения об электромагнитных переходных процессах. Виды коротких замыканий и общая характеристика. Допущения, принимаемые при расчете токов короткого замыкания. Параметры расчетных схем, необходимые для расчета электромагнитных переходных процессов. Эквивалентные преобразования, метод узловых потенциалов.
3	Расчетные схемы замещения и их преобразование.	Системы единиц, используемые при составлении схем замещения. Виды схем замещения. Составление схем замещения с исключением трансформаторных связей путём приведения параметров всех элементов расчетной схемы к одной ступени напряжения. Составление схем замещения с сохранением трансформаторных связей. Преобразование схем замещения.
4	Переходные процессы в трёхфазных электрических цепях, подключенных к источнику синусоидального напряжения.	Переходной процесс при трёхфазном коротком замыкании в цепи без трансформатора. Особенности переходного процесса в разветвлённой цепи, процесс при включении в сеть трансформатора с разомкнутой вторичной обмоткой и переходной процесс при коротком замыкании за трансформатором. Составление схем замещения с сохранением трансформаторных связей.
5	Расчет трёхфазного короткого замыкания в начальный и произвольный моменты времени при удалённых коротких замыканиях.	Понятие составляющих токов короткого замыкания: периодический и апериодический токи, ударный ток короткого замыкания. Осциллограмма тока кз. Способы построения графиков. Переходной процесс при трёхфазном коротком замыкании в цепи без трансформаторов. Особенности переходного процесса при трёхфазном кз в разветвлённой цепи.

6	Расчет	Методика расчета симметричного короткого
	установившегося тока	замыкания в двух частных случаях: - при
	трёхфазного короткого	отсутствии автоматического регулирования у
	замыкания при	синхронных генераторов; - при наличии
	отсутствии	автоматического регулирования работы
	автоматического	генераторов. Уравнения переходного процесса в
	регулирования и при	синхронной машине и их корни. Изменение во
	наличии АВР	времени тока якоря синхронной машины при
	генераторов.	трёхфазном КЗ.
7	Расчет периодической	Семейства основных и дополнительных кривых.
	составляющей тока	Расчет токов кз в случае с одним генератором,
	короткого замыкания	несколькими однотипными, находящимися в
	методом типовых	одинаковых условиях относительно удалённой
	кривых.	точки кз и несколькими генераторами,
		находящимися в разных условиях относительно
		точки кз. Результирующий ток короткого
		замыкания
8	Расчёт токов короткого	Основные факторы, влияющие на переходной
	замыкания в сетях	процесс при коротком замыкании. Параметры
	напряжением до 1 кВ.	элементов электроустановок переменного и
		постоянного тока, необходимые для расчета
		переходных процессов. Составление схем
		замещения. Расчет трехфазного короткого
		замыкания. Электромагнитные переходные
		процессы в электроустановках с
		полупроводниковыми преобразователями.
9	Несимметричные	Методы, используемые при расчете
	короткие замыкания.	несимметричных режимов. Составление схем
		замещения прямой, обратной и нулевой
		последовательности. Параметры различных
		элементов электроэнергетических систем по
		отношению к токам обратной и нулевой
		последовательности. Влияние и учет переходного
		сопротивления в месте короткого замыкания.
10	Правило	Расчет несимметричных коротких замыканий
	эквивалентности	разных видов: - однофазные кз, - двухфазные кз
	прямой	двухфазные кз на землю. расчет тока в
	последовательности.	произвольной ветви и напряжения в произвольном
		узле при несимметричных коротких замыканиях.
		Соотношение токов короткого замыкания разных
		видов при замыканиях в одной и той же точке.
11	Решение задач по всем	Решение задач по разделам предмета.
	разделам дисциплины.	
12	Решение специальных	Индивидуальные задания, задачи, расчетно-
	задач повышенной	графические работы по разделам дисциплины.
	сложности.	

Семестр **№** <u>6</u>

No	Тема	Краткое содержание
1	Схема замещения и	Схема замещения и векторная диаграмма

	векторная диаграмма	синхронного турбогенератора и гидрогенератора
	синхронного генератора	при анализе электромагнитных переходных
	для анализа	процессов. Уравнение переходного
	электромагнитных	процесса в обмотке возбуждения генератора
	переходных процессов.	
2	Уравнение	Векторная диаграмма простейшей электрической
	механического	системы. Выражения для мощностей через
	движения ротора	генератора различные ЭДС генератора.
	генератора.	
3	Угловые	Определение угловых характеристик мощности
J	характеристики	через собственные и взаимные сопротивления, при
	мощности.	учете активных сопротивлений и проводимостей в
	мощности.	схеме замещения и для идеализированной системы
		без потерь.
4	Понятие динамической	Причины и характер больших возмущений в
4	устойчивости.	
	устоичивости.	электрической системе. Задачи исследования
		динамической устойчивости. Допущения,
		принимаемые при анализе динамической
		устойчивости. Энергетические соотношения,
_		характеризующие движение ротора генератора.
5	Способ площадей,	Способ площадей, допущения и область
	допущения и область	применения. Определение предельного угла
	применения.	отключения короткого замыкания и критического
		угла. Представление процесса на фазовой
		плоскости. Обобщение способа площадей на схему
		двух станций.
6	Метод	Численное решение уравнения движения ротора
	последовательных	генератора. Метод последовательных интервалов.
	интервалов.	Составление циклограммы и порядок расчета
		электромеханического переходного процесса в
		простейшей системе. Учет электромагнитных
		переходных процессов. Влияние демпфирования.
		Анализ процессов с учетом форсировки
		возбуждения генератора. Особенности расчета
		переходных процессов в сложной системе.
7	Задачи и методы	Статическая устойчивость ЭЭС. Задачи и методы
	исследования	исследования. Основные допущения и области
	статической	применения. Математическое описание
	устойчивости ЭЭС.	переходных процессов при анализе статической
		устойчивости. Метод малых колебаний.
		Необходимые и достаточные условия статической
		устойчивости. Статическая устойчивость и малые
		колебания в нерегулируемой системе.
8	Виды нарушения	Нарушения устойчивости в виде сползания,
J	устойчивости ЭЭС.	самораскачивания и самовозбуждения и способы
	устоичивости ЭЭС.	
0	Dorwaynonayyya	их устранения.
9	Регулирование	Ручное регулирование возбуждения, его влияние
	возбуждения, его	на статическую устойчивость и режимные
	задачи.	характеристики ЭЭС. Анализ статической
		устойчивости простейшей ЭЭС с учетом
		автоматического регулятора возбуждения (АРВ)

		пропорционального действия. Статическая устойчивость ЭЭС с APB сильного действия.
10	Переходные процессы в узлах нагрузки ЭЭС. Задачи исследования.	Статические и динамические характеристики нагрузки. Уравнение движения и схема замещения асинхронного двигателя (АД). Практический критерий статической устойчивости АД. Изменение условий статической устойчивости АД при его работе от источника соизмеримой мощности. Лавина напряжения - причина возникновения и средства подавления. Общие принципы построения практических критериев.
11	Практические критерии для узлов комплексных нагрузок.	Статические характеристики и регулирующие эффекты мощности нагрузок по напряжению.
12	Поведение нагрузки при больших возмущениях.	Пуск АД, работа при толчкообразной нагрузке на валу, при резких снижениях напряжения на зажимах. Численное решение уравнения движения ротора АД при больших возмущениях. Поведение АД нагрузки при коротких замыканиях.
13	Асинхронные режимы в ЭЭС.	Общая характеристика асинхронных режимов и основные задачи их исследования. Причины возникновения асинхронного режима. Понятие результирующей устойчивости. Процесс выпадения из синхронизма, необходимое условие ресинхронизации. Практические способы восстановления синхронного режима.
14	Причины и характер изменения частоты в ЭЭС.	Изменения частоты в электроэнергетических системах. Причины и характер изменения частоты. Требования к частоте как к общесистемному показателю качества электроэнергии. Виды регулирования первичных двигателей. Статические характеристики нерегулируемых и регулируемых первичных двигателей в системе.
15	Определение динамических характеристик частоты в системе.	Лавина частоты и способы ее предотвращения. Автоматическая частотная разгрузка, мероприятия по обеспечению требуемого уровня частоты в ЭЭС. Динамические свойства электроэнергетических систем.
16	Решение задач по всем разделам дисциплины.	Решение задач по разделам предмета.
17	Решение специальных задач повышенной сложности.	Индивидуальные задания, задачи, расчетно- графические работы по разделам дисциплины.

4.3 Перечень лабораторных работ

Семестр № $\underline{6}$

Nº	Наименование лабораторной работы	Кол-во академических часов
1	Исследование угловой характеристики	2

	синхронного генератора.	
2	Исследование статической характеристики передачи при изменении длины воздушной линии.	3
3	Исследование статической характеристики передачи при изменении тока возбуждения генератора.	2
4	Исследование динамической устойчивости воздушной линии при возникновении 2х фазного режима короткого замыкания.	2
5	Исследование статической характеристики передачи с промежуточным отбором мощности	2
6	Исследование статической устойчивости узлов нагрузки.	2
7	Исследование динамической устойчивости воздушной линии при возникновении однофазного режима короткого замыкания.	2
8	Исследование динамической устойчивости передачи при сбросе/набросе мощности на турбине.	3

4.4 Перечень практических занятий

Семестр № <u>5</u>

N₂	Темы практических (семинарских) занятий	Кол-во академических часов
1	Общие сведения об электромагнитных переходных процессах	1
2	Виды коротких замыканий и общая характеристика.	1
3	Расчетные схемы замещения и их преобразование.	2
4	Переходные процессы в трёхфазных электрических цепях, подключенных к источнику синусоидального напряжения.	1
5	Расчет трёхфазного короткого замыкания в начальный и произвольный моменты времени при удалённых коротких замыканиях.	2
6	Расчет трёхфазного короткого замыкания в начальный и произвольный моменты времени при удалённых коротких замыканиях.	2
7	Расчет периодической составляющей тока короткого замыкания методом типовых кривых.	1
8	Расчёт токов короткого замыкания в сетях напряжением до 1 кВ.	1
9	Несимметричные короткие замыкания.	2
10	Правило эквивалентности прямой последовательности.	2

4.5 Самостоятельная работа

Семестр № 5

N₂	Вид СРС	Кол-во академических часов
1	Подготовка к контрольным работам	3
2	Подготовка к практическим занятиям	40
3	Решение специальных задач	20

Семестр № 6

N₂	Вид СРС	Кол-во академических часов
1	Подготовка к контрольным работам	4
2	Подготовка к практическим занятиям (лабораторным работам)	30
3	Решение специальных задач	20

В ходе проведения занятий по дисциплине используются следующие интерактивные методы обучения: Дискуссия, компьютерные симуляции, кейс-технология, мозговой штурм, проект.

5 Перечень учебно-методического обеспечения дисциплины

5.1 Методические указания для обучающихся по освоению дисциплины

5.1.1 Методические указания для обучающихся по курсовому проектированию/работе:

Выдается персональное задание по курсовому проекту.

- 1. Методические указания к выполнению КР «Переходные процессы в электроэнергетических системах. М. А. Новожилов. Иркутский Государственный технический университет: Иркутск, 2001 г.
- 2. Ульянов С.А. Электромагнитные переходные процессы в электрических системах. М.: Энергия, 1970 г. 520 с.
- 3. Правила устройства электроустановок, 7-е издание.: -М, 2000 г.
- 4. РД 153-34.0-20.527-98. Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования.
- 5. ГОСТ 28249-93. Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ.
- 6. ГОСТ 52735-2007. Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением свыше 1 кВ.
- 7. ГОСТ 52376-2007. Короткие замыкания в электроустановках. Методы расчета электродинамического и термического действия тока короткого замыкания.

5.1.2 Методические указания для обучающихся по практическим занятиям

Студентам заранее назначается тема практического занятия, которую они должны изучить на основе лекционного материала, профессионального стандарта и рекомендованной литературы. По теме практического занятия проводится семинар в диалоговом режиме или в форме групповой дискуссии, решаются задачи, соответствующие теме занятия, проводится анализ ситуации.

1. Хрущев, Ю. В. Электроэнергетические системы и сети. Электромеханические

переходные процессы: учебное пособие для вузов / Ю. В. Хрущев, К. И. Заподовников, А. Ю. Юшков. — Москва: Издательство Юрайт, 2022. — 153 с. — (Высшее образование).

ISBN 978-5-534-02713-6. — Текст: электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/490250 (дата обращения: 15.03.2023).

2. Воропай, Николай Иванович. Электромеханические переходные процессы в электроэнергетических системах [Электронный ресурс]: учеб. пособие / Н. И. Воропай. - Благовещенск: Изд- во Амур. гос. ун-та, 2013. - 151 с.

Режим доступа: http://irbis.amursu.ru/DigitalLibrary/AmurSU_Edition/7102.pdf

3. Куликов, Юрий Алексеевич. Переходные процессы в электрических системах [Текст]: Учеб. пособие: Рек. Мин. обр. РФ / Ю.А. Куликов. — Новосибирск: Изд- во Новосиб.

гос. техн. ун-та; М.: Мир: АСТ, 2003. – 284 с.

- 4. Воропай Н.И. Электромеханические переходные процессы в электроэнергетических системах [Электронный ресурс]: метод. указания к практ. занятиям / Н. И. Воропай; АмГУ,
- Эн. ф. Благовещенск: Изд-во Амур. гос. ун-та, 2014. 100 с. Режим доступа: http://irbis.amursu.ru/DigitalLibrary/AmurSU_Edition/7078.pdf
- 5. Лизалек, Н. Н. Динамические свойства энергосистем при электромеханических колебаниях. Структурная организация движений и устойчивость: учебное пособие / Н. Н. Лизалек, В. Ф. Тонышев. Новосибирск: Новосибирский государственный технический университет, 2013. 212 с. ISBN 978-5-7782-2296-0. Текст: электронный // Цифровой

образовательный ресурс IPR SMART : [сайт]. — URL:

https://www.iprbookshop.ru/45086.html (дата обращения: 15.03.2023). — Режим доступа: для

авторизир. пользователей

- 6. Электромеханические переходные процессы в электрических системах [Электронный ресурс]: учеб.- метод. пособие к курсовому проектированию / А. Н. Козлов, В. А. Козлов ; АмГУ, Эн. ф. 3-е изд., испр. Благовещенск : Изд-во Амур. гос. ун-та, 2017.
- 136 c. http://irbis.amursu.ru/DigitalLibrary/AmurSU Edition/7747.pdf
- 7. Снопкова Н.Ю. Электромеханические переходные процессы. Методические указания к практическим занятиям / ИРНИТУ [Электронное издание] Иркутск, 2018.
- 8. Расчет токов коротких замыканий и замыканий на землю в распределительных сетях Методические указания -

https://www.mtrele.ru/files/project/raschet_ustavok/raschet_tokov_korotkih_zamykanij_i_zamykanij_na_zemlyu_v_raspredelitelnPД 153-34.0-20.527-98

9. Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования - http://www.gosthelp.ru/text/RD1533402052798Rukovodyas.html

5.1.3 Методические указания для обучающихся по лабораторным работам:

Студентам заранее назначается тема лабораторного занятия, которую они должны изучить на основе лекционного материала, профессионального стандарта и рекомендованной литературы.

1. Методические указания к выполнению KP «Переходные процессы в электроэнергетических системах. М. А. Новожилов. Иркутский Государственный технический университет: Иркутск, 2001 г.

5.1.4 Методические указания для обучающихся по самостоятельной работе:

Подготовка к практическим занятиям, выполнение презентаций, отчетов, рефератов и решение задач.

- 1. Снопкова Н.Ю. Электромеханические переходные процессы. Методические указания по самостоятельной работе и курсовой работе / ИРНИТУ [Электронное издание] Иркутск, 2018.
- 2. Электромеханические переходные процессы в электрических системах [Электронный ресурс]: учеб.- метод. пособие к курсовому проектированию / А. Н. Козлов, В. А. Козлов ; АмГУ, Эн. ф. 3-е изд., испр. Благовещенск: Изд-во Амур. гос. ун-та, 2017. 136 с. http://irbis.amursu.ru/DigitalLibrary/AmurSU_Edition/7747.pdf

6 Фонд оценочных средств для контроля текущей успеваемости и проведения промежуточной аттестации по дисциплине

6.1 Оценочные средства для проведения текущего контроля

6.1.1 семестр 5 | Устный опрос

Описание процедуры.

Выдаются персональные задания по рассматриваемой теме. Задания имеют теоретическую часть состоящую из трех вопросов и задачи. Примеры вопросов:

- 1. Методы преобразования схем замещения. Применение принципа наложения.
- 2. Переходной процесс в неподвижных магнитосвязанных цепях.
- 3. Периодическая и апериодическая составляющая тока трёхфазного короткого замыкания.
- 4. Ударный ток, ударный коэффициент. Полное значение тока короткого замыкания в функции времени.
- 5. Баланс магнитных потоков в продольной оси ротора в начальный момент внезапного изменения режима.

Задача: выполнить преобразование схемы системы электроснабжения для расчета токов короткого замыкания.

Критерии оценивания.

1) "Отлично" - все выполнено верно и без ошибок; 2) "Хорошо" - задачи решены верно, теоретическая часть и ответы на вопросы имеют неточности; 3) "Удовлетворительно" - имеются неточности в решении задачи и ответах; 4) "Неудовлетворительно" - все ответы не верны.

6.1.2 семестр 5 | Решение задач

Описание процедуры.

Выдаются персональные задания по рассматриваемой теме. Задания имеют теоретическую часть и задачи.

Критерии оценивания.

1) "Отлично" - все выполнено верно и без ошибок; 2) "Хорошо" - задачи решены верно, теоретическая часть и ответы на вопросы имеют неточности; 3) "Удовлетворительно" - имеются неточности в решении задачи и ответах; 4) "Неудовлетворительно" - все ответы не верны.

6.1.3 семестр 6 | Устный опрос

Описание процедуры.

Выдаются персональные задания по рассматриваемой теме. Задания имеют теоретическую часть состоящую из трех вопросов и задачи.

Примеры вопросов:

- 1. Методы преобразования схем замещения. Применение принципа наложения.
- 2. Переходной процесс в неподвижных магнитосвязанных цепях.
- 3. Периодическая и апериодическая составляющая тока трёхфазного короткого замыкания.
- 4. Ударный ток, ударный коэффициент. Полное значение тока короткого замыкания в функции времени.
- 5. Баланс магнитных потоков в продольной оси ротора в начальный момент внезапного изменения режима.

Задача: выполнить преобразование схемы системы электроснабжения для расчета токов короткого замыкания.

Критерии оценивания.

1) "Отлично" - все выполнено верно и без ошибок; 2) "Хорошо" - задачи решены верно, теоретическая часть и ответы на вопросы имеют неточности; 3) "Удовлетворительно" - имеются неточности в решении задачи и ответах; 4) "Неудовлетворительно" - все ответы не верны.

6.1.4 семестр 6 | Решение задач

Описание процедуры.

Выдаются персональные задания по рассматриваемой теме. Задания имеют теоретическую часть и задачи.

Критерии оценивания.

1) "Отлично" - все выполнено верно и без ошибок; 2) "Хорошо" - задачи решены верно, теоретическая часть и ответы на вопросы имеют неточности; 3) "Удовлетворительно" - имеются неточности в решении задачи и ответах; 4) "Неудовлетворительно" - все ответы не верны.

6.2 Оценочные средства для проведения промежуточной аттестации

6.2.1 Критерии и средства (методы) оценивания индикаторов достижения компетенции в рамках промежуточной аттестации

Индикатор достижения компетенции	Критері	ии оценивания		Средства (методы) оценивания промежуточной аттестации
ПКС-2.5	Демонстрирует	знания	об	Устное
	особенностях	установившихся	И	собеседование по
	переходных	режимов и	ИХ	теоретическим
	взаимосвязи.			вопросам и
				выполнение
				практических

		заданий и/или
		лабораторных
		работ.
ПКС-2.6	Составляет расчетные схемы и	Устное
	выполняет расчеты токов коротких	собеседование по
	замыканий в электроэнергетических	теоретическим
	системах.	вопросам и
		выполнение
		практических
		заданий и/или
		лабораторных
		работ.

6.2.2 Типовые оценочные средства промежуточной аттестации

6.2.2.1 Семестр 5, Типовые оценочные средства для проведения зачета по дисциплине

6.2.2.1.1 Описание процедуры

Зачет проходит в формате собеседования со студентом. Оценивается понимание пройденного материала. Оценка производится по пятибалльной шкале. Знания, умения, владения обучающегося на экзамене оцениваются оценками: «зачтено», «не зачтено». Проверяется знание теоретического материала, наличие всех лекций и выполненных презентаций, пройденных тестов. Зачет проводится письменно по билетам. Билет состоит из двух вопросов и задачи. В случае невыполнения критерия оценивания назначается дата пересдачи, но не более 2 раз с последующим опросом по всем темам дисциплины.

Пример задания:

Примеры вопросов.

- 1. Основные сведения об электромагнитных переходных процессах. Основные определения.
- 2. Причины возникновения переходных процессов и следствия.
- 3. Основные допущения, принимаемые при исследовании электромагнитных переходных процессов.
- 4. Определение параметров элементов электрических систем в относительных единицах.
- 5. Принципы составления схем замещения. Определение ЭДС синхронных машин и асинхронных двигателей.
- 6. Методы преобразования схем замещения. Применение принципа наложения.
- 7. Переходной процесс в неподвижных магнитосвязанных цепях.
- 8. Периодическая и апериодическая составляющая тока трёхфазного короткого замыкания.
- 9. Ударный ток, ударный коэффициент. Полное значение тока короткого замыкания в функции времени.
- 10. Баланс магнитных потоков в продольной оси ротора в начальный момент внезапного изменения режима.
- 11. Переходные и сверхпереходные ЭДС и реактивности синхронной машины
- 12. Влияние нагрузки в начальный момент короткого замыкания.

- 13. Влияние асинхронного двигателя в начальный момент короткого замыкания.
- 14. Общие уравнения переходного процесса синхронных машин.
- 15. Алгоритм определения установившегося тока короткого замыкания при отсутствии автоматического регулирования возбуждения.
- 16. Алгоритм определения установившегося тока короткого замыкания в системе, содержащей генераторы с автоматическими регуляторами возбуждения.
- 17. Протекание переходного процесса в синхронном генераторе. Определение действующего значения периодической составляющей тока короткого замыкания в момент времени t с учетом и без учета автоматического возбуждения генератора.
- 18. Величины, характеризующие отключающую способность выключателя. Условия проверки выключателей по отключающей способности.
- 19. Определение токов короткого замыкания в произвольный момент времени.
- 20. Метод типовых кривых. Порядок расчёта периодической слагающей тока короткого замыкания в схеме с одним генератором.
- 21. Порядок расчёта периодической слагающей тока короткого замыкания в схеме с несколькими генераторами, находящихся в одинаковых условиях относительно точки короткого замыкания.
- 22. Порядок расчёта периодической слагающей тока короткого замыкания в схеме с несколькими генераторами, находящихся в разных условиях относительно точки короткого замыкания.
- 23. В каких случаях используются основные и дополнительные кривые. Каков алгоритм расчета тока короткого замыкания с использованием метода типовых кривых.
- 24. Схемы замещения для токов прямой, обратной и нулевой последовательностей.
- 25. Параметры элементов электрической системы для токов различных последовательностей.
- 26. Особенности составления схемы замещения нулевой последовательности.
- 27. Виды несимметричных коротких замыканий и схемы замещения в аварийном режиме.
- 28. Правило эквивалентности прямой последовательности.
- 29. Порядок расчета токов несимметричных коротких замыканий.
- 30. Составление схемы замещения в сетях напряжением до 1 кВ.
- 31. Расчет тока при трёхфазном коротком замыкании в сетях напряжением до 1 кВ.
- 32. Виды несимметричных коротких замыканий и схемы замещения в аварийном режиме.
- 33. Схемы замещения для токов прямой, обратной и нулевой последовательностей
- 34. Классификация электромеханических переходных процессов. Характеристики системы, содержащей любое число линейных элементов.
- 35. Простейшая оценка статической устойчивости.
- 36. Практический критерий статической устойчивости простейшей системы.
- 37. Простейшая оценка динамической устойчивости.
- 38. Устойчивость системы, содержащей станцию, питающую через ЛЭП нагрузку соизмеримой мощности.
- 39. Способ площадей при исследовании устойчивости
- 40. Применение способа площадей при анализе автоматического регулирования возбуждения.
- 41. Влияние управления током возбуждения на качания генератора.
- 42. Связь между видом корней характеристического уравнения и видом переходного процесса.
- 43. Анализ статической устойчивости, нерегулируемой и регулируемой систем.
- 44. Процесс выпадения генератора из синхронизма.
- 45. Мероприятия по повышению статической устойчивости.
- 46. Меры предотвращения режимов короткого замыкания.
- 47. Мероприятия по повышению динамической устойчивости

6.2.2.1.2 Критерии оценивания

Зачтено	Не зачтено
Отличное понимание предмета,	Результаты обучения не соответствуют
всесторонние знания, отличные умения и	минимальным требованиям.
владения.	

6.2.2.2 Семестр 6, Типовые оценочные средства для проведения экзамена по дисциплине

6.2.2.2.1 Описание процедуры

Экзамен проходит в формате собеседования со студентом. К экзамену допускаются обучающие, которые выполнили практические работы. Оценивается понимание пройденного материала. Оценка производится по пятибалльной шкале. Знания, умения, владения обучающегося на экзамене оцениваются оценками: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно». Проверяется знание теоретического материала, наличие всех лекций и выполненных презентаций, пройденных тестов. Экзамен проводится письменно по экзаменационным билетам.

Экзаменационный билет состоит из трех вопросов и задачи. В случае невыполнения критерия оценивания назначается дата пересдачи, но не более 2 раз с последующим опросом по всем темам дисциплины.

Пример задания:

- 1. Основные понятия и определения.
- 2. Нормальные, утяжеленные, вынужденные, аварийные и послеаварийные установившиеся режимы ЭЭС.
- 3. Возмущающие воздействия и возмущения в ЭЭС.
- 4. Нормальные и аварийные электромеханические переходные процессы в ЭЭС.
- 5. Простейшая ЭЭС и ее схема замещения.
- 6. Понятие о статической устойчивости ЭЭС.
- 7. Понятие о динамической устойчивости ЭЭС.
- 8. Основные положения, принимаемые при анализе режимов и электромеханических переходных процессов в ЭЭС.
- 9. Требования, предъявляемые к режимам ЭЭС.
- 10. Определение собственных и взаимных проводимостей схем замещения ЭЭС.
- 11. Выражения для активных и реактивных мощностей генераторов.
- 12. Осуществимость установившихся режимов ЭЭС.
- 13. Необходимые и достаточные условия существования решения уравнений установившихся режимов простейшей ЭЭС.
- 14. Векторные диаграммы и соотношения между параметрами в простейшей ЭЭС.
- 15. Угловые характеристики мощности простейшей ЭЭС.
- 16. Режимы максимальных и предельных нагрузок.
- 17. Качество переходного процесса в ЭЭС.
- 18. Статическая устойчивость простейшей ЭЭС.
- 19. Критерии статической устойчивости простейшей ЭЭС.
- 20. Динамическая устойчивость простейшей ЭЭС.
- 21. Уравнение движения ротора генератора.
- 22. Энергетические соотношения, характеризующие движение ротора генератора.
- 23. Способ площадей.

- 24. Определение предельного угла отклонения короткого замыкания.
- 25. Способ площадей при исследовании динамической устойчивости двух станций.
- 26. Представление переходного процесса в простейшей ЭЭС на фазовой плоскости.
- 27. Численное решение уравнения движения ротора генератора методом последовательных интервалов.
- 28. Расчет переходного процесса в простейшей ЭЭС методом последовательных интервалов при учете электромагнитных переходных процессов в синхронных генераторах передающей станции.
- 29. Частные случаи определения характера изменения угла ротора генератора во времени.
- 30. Исследование динамической устойчивости простейшей ЭЭС в случае полного сброса мошности.
- 31. Применение типовых кривых для определения предельного угла отключения к.з. в простейшей ЭЭС.
- 32. Расчет переходного процесса в сложной ЭСС, содержащей произвольное число станций и нагрузок.
- 33. Математическое описание переходных процессов при анализе статической устойчивости ЭЭС.
- 34. Применение метода малых колебаний для исследования статической устойчивости ЭЭС.
- 35. Расположение корней характеристического уравнения на комплексной плоскости и вид переходного процесса.
- 36. Алгебраические критерии статической устойчивости: критерий Гурвица, критерий Рауса, критерий Жданова П.С.
- 37. Частотные критерии статической устойчивости: критерий Михайлова.
- 38. Анализ статической устойчивости простейшей ЭЭС с учетом электромагнитных переходных процессов и регуляторов возбуждения пропорционального и сильного действия.
- 39. Самораскачивание и самовозбуждение в ЭЭС.
- 40. Практические критерии статической устойчивости ЭЭС.
- 41. Основные допущения и области применения практических критериев статической устойчивости ЭЭС.
- 42. Исследование статической устойчивости установившихся режимов сложных ЭЭС.
- 43. Причины и характер изменения частоты в ЭЭС.
- 44. Требования к частоте как к общесистемному показателю качества электроэнергии в ЭЭС.
- 45. Статические характеристики ЭЭС (медленные изменения частоты в установившемся режиме).
- 46. Динамические изменения в ЭЭС при изменении частоты.
- 47. Неустойчивость частоты и меры ее предотвращения.
- 48. Автоматическая разгрузка по частоте (АЧР).
- 49. Понятия об узлах нагрузки ЭЭС.
- 50. Характеристики элементов нагрузки и узлов в целом.
- 51. Понятие о статических и динамических характеристиках комплексной нагрузки.
- 52. Характеристики нагрузки при одновременном значительном изменении частоты и напряжения.
- 53. Соизмеримость мощностей нагрузки и источников электроэнергии и ее влияние на статическую устойчивость узлов нагрузки.
- 54. Включение в нагрузку компенсирующих устройств и их влияние на устойчивость узлов нагрузки.
- 55. Устойчивость нагрузки (лавина напряжения и ее предотвращение).
- 56. Переходные процессы в узлах нагрузки при больших возмущениях.

- 57. Пуск двигателей.
- 58. Самозапуск двигателей.
- 59. Устойчивость синхронных и асинхронных двигателей при толчках.
- 60. Самовозбуждение асинхронных двигателей при последовательной емкостной компенсации в сети.
- 61. Влияние резко переменной нагрузки на работу ЭЭС.
- 62. Причины возникновения асинхронных режимов в ЭЭС.
- 63. Понятие результирующей устойчивости ЭЭС.
- 64. Параметры и характеристики элементов ЭЭС при асинхронных режимах.
- 65. Процесс выпадения генераторов из синхронизма и переход в установившийся асинхронный режим.
- 66. Последовательность операций при ресинхронизации асинхронно работающего генератора.
- 67. Порядок расчета результирующей устойчивости ЭЭС.
- 68. Основные мероприятия по обеспечению статической устойчивости ЭЭС.
- 69. Основные мероприятия по обеспечению динамической устойчивости ЭЭС.
- 70. Основные мероприятия по улучшению качества электромеханических переходных процессов в ЭЭС.
- 71. Составления схем замещения ЭЭС при исследовании установившихся режимов и электромеханических переходных процессов.
- 72. Определения параметров ЭЭС и режимов при исследовании электромеханических переходных процессов ЭЭС.
- 73. Расчета динамической устойчивости простейшей ЭЭС.
- 74. Расчета и оценки статической устойчивости простейшей ЭЭС.
- 75. Расчета статической и динамической устойчивости узлов нагрузки ЭЭС.
- 76. Расчета результирующей устойчивости простейшей ЭЭС.

6.2.2.2 Критерии оценивания

Отлично	Хорошо	Удовлетворительн о	Неудовлетворительно
Оценка	Оценка «Хорошо»	Оценка	Оценка
«Отлично» -	- Обучающийся	«Удовлетворительно	«Неудовлетворительно
Обучающийся	применил	» - Обучающийся	» - Обучающийся
рационально	изученные методы	применил изученные	применил изученные
применил	расчета с	методы расчета, но	методы расчета, но не
изученные методы	подробным	не привел	привел подробного
расчета с	обоснованием	подробного	обоснования решения
подробным	решения задач, но	обоснования	при выполнении и
обоснованием	допустил	решения при	защите
решения при	незначительные	выполнении	индивидуальных
выполнении	ошибки.	индивидуальных	заданий. Допустил
индивидуальных		заданий. Допустил	грубые ошибки.
заданий.		ошибки.	

6.2.2.3 Семестр 6, Типовые оценочные средства для курсовой работы/курсового проектирования по дисциплине

6.2.2.3.1 Описание процедуры

Расчет токов короткого замыкания систем электроснабжения.

6.2.2.3.2 Критерии оценивания

Отлично	Хорошо	Удовлетворительн о	Неудовлетворительно
Оценка	Оценка «Хорошо»	Оценка	Оценка
«Отлично» -	- Обучающийся	«Удовлетворительно	«Неудовлетворительно
Обучающийся	применил	» - Обучающийся	» - Обучающийся
рационально	изученные методы	применил изученные	применил изученные
применил	расчета с	методы расчета, но	методы расчета, но не
изученные методы	подробным	не привел	привел подробного
расчета с	обоснованием	подробного	обоснования решения
подробным	решения задач, но	обоснования	при выполнении и
обоснованием	допустил	решения при	защите
решения при	незначительные	выполнении	индивидуальных
выполнении	ошибки.	индивидуальных	заданий. Допустил
индивидуальных		заданий. Допустил	грубые ошибки.
заданий.		ошибки.	

7 Основная учебная литература

- 1. Переходные процессы в электроэнергетических системах : программа, задания на курсовую работу, методические указания к выполнению курсовой работы (для заочной формы обучения). Специальность 100400 "Электроснабжение" / Иркут. гос. техн. ун-т; сост. Новожилов М. А. Ч. 1 : Электромагнитные переходные процессы, 2001. 30.
- 2. Переходные процессы в линейных электрических цепях : метод. указания и контрол. задания / Иркут. гос. техн. ун-т, 2001. 31.
- 3. Ульянов С. А. Электромагнитные переходные процессы в электрических системах : учебник для электротехнических и энергетических вузов и факультетов / С. А. Ульянов, 1970. 517.
- 4. Методические указания к лабораторным работам по курсу "Электромагнитные переходные процессы в электрических системах" / Иркут. политехн. ин-т, 1982. 27.
- 5. Переходные процессы в системах электроснабжения : учеб. для вузов по специальности "Электроснабжение" (по отрасл.) / Василий Николаевич Винославский, Γ . Γ . Пивняк, Π . И. Несен, 1989. 421.
- 6. Ульянов С. А. Электромагнитные переходные процессы в электрических системах : учебник для электротехнических и энергетических вузов и факультетов / С. А. Ульянов, 2010. 518.
- 7. Новожилов М. А. Переходные процессы в электроэнергетических системах : лабораторный практикум / М. А. Новожилов, В. А. Пионкевич, 2014. 75.
- 8. Новожилов М. А. Переходные процессы в электрической системе с MATLAB : учебное пособие / М. А. Новожилов, 2017. 302.
- 9. Пионкевич В. А. Переходные процессы: электронный курс / В. А. Пионкевич, 2019
- 10. Воропай Н. И. Переходные процессы в электроэнергетических системах. Основы электромеханических переходных процессов в электроэнергетических системах : учебное пособие / Н. И. Воропай, Д. Н. Ефимов, Е. В. Сташкевич, 2020. 138.

11. Пионкевич В. А. Переходные процессы в электроэнергетических системах. Моделирование переходных процессов в системе MATLAB : учебное пособие / В. А. Пионкевич, 2021. - 94.

8 Дополнительная учебная литература и справочная

- 1. Переходные процессы в электрических системах : метод. указания к выполнению курсовой и контрол. работы / Иркут. политехн. инт-т, 1984. 35.
- 2. Ковач К. П. Переходные процессы в машинах переменного тока : пер. с нем. / К. П. Ковач, И. Рац, 1963. 744.
- 3. Переходные процессы и условия работы оборудования электрических систем : сборник статей / Ред. Г. А. Евдокунин, 1981. 117.
- 4. Переходные процессы и устойчивость электроэнергетических систем : сб. науч. тр. / Гос. науч.-исслед. энерг. ин-т им. Г. М. Кржижановского, 1983. 129.
- 5. Нелинейные колебания и переходные процессы в машинах : сб. ст. / Гос. науч.-исслед. ин-т машиноведения, 1972. 364.
- 6. Наумов Б. Н. Переходные процессы в линейных системах автоматического регулирования: лекции по курсу "Теория автомат. регулирования" / Б. Н. Наумов, 1960. 221.
- 7. Электромагнитные переходные процессы в асинхронном электроприводе / М. М. Соколов [и др.], 1967. 201.
- 8. Математическое моделирование и переходные процессы в энергетических установках : сб. науч. тр. / АН УССР, Ин-т техн. теплофизики, 1983. 139.
- 9. Волошин И. Ф. Переходные процессы в цепях с термисторами / И. Ф. Волошин, В. А. Палагин, 1967. 243.
- 10. Саитбаталова Раиса Садыковна. Практические методы расчета токов короткого замыкания в электрических сетях напряжением выше 1 кВ: учеб. пособие по курсу "Переходные процессы в электроэнергет. системах" / Н. С. Саитбаталова, Н. И. Варламов, Р. У. Галеева, 1999. 60.
- 11. Куликов Ю. А. Переходные процессы в электрических системах : учеб. пособие для подгот. бакалавров и дипломир. специалистов по направлению "Электроэнергетика" / Ю. А. Куликов, 2003. 283.
- 12. Переходные процессы электрических систем в примерах и иллюстрациях : учеб. пособие для втузов / Н. Д. Анисимова и др.; под ред. В. А. Веникова, 1967. 454.
- 13. Ерхан Федор Михайлович. Токи короткого замыкания и надежность энергосистем / Федор Михайлович Ерхан; Отв. ред. В. М. Постолатий, 1985. 207.
- 14. Будницкий А. Б. Токи короткого замыкания : [учебное пособие для студентов электротехнических факультетов вузов УССР] / А. Б. Будницкий, М. Л. Калниболотский, 1959. 215.
- 15. Будницкий А. Б. Токи короткого замыкания / А. Б. Будницкий, Л. Калниболотский, 1956. 200.

- 16. Маркович И. М. Токи короткого замыкания и устойчивость параллельной работы электрических систем / И. М. Маркович, 1947. 188.
- 17. Ульянов С. А. Токи короткого замыкания / С. А. Ульянов, 1937. 240.

9 Ресурсы сети Интернет

- 1. http://library.istu.edu/
- 2. https://e.lanbook.com/

10 Профессиональные базы данных

- 1. http://new.fips.ru/
- 2. http://www1.fips.ru/

11 Перечень информационных технологий, лицензионных и свободно распространяемых специализированных программных средств, информационных справочных систем

1. Свободно распространяемое программное обеспечение Python

12 Материально-техническое обеспечение дисциплины

- 1. Доска аудиторная ДА-За
- 2. Доска аудиторная ДА-За
- 3. Ком-т лаб.обор." Умная местная распределительная электрическая сеть" УМРЭС1-С-К(стендовое исполнение,компьтер-ая версия)
- 4. Ком-т лаб.обор. "Электромонтажный стол" ЭМС2-С (стендовое исполнение)
- 5. Демонстрационный стенд
- 6. Двухсторонний информационный стенд
- 7. Система информационно-электроизмерительная
- 8. Устройство испытательное РЕТОМ-21
- 9. лабораторный стенд ИИТ
- 10. лабораторный стенд ИИТ
- 11. 314650 Частотомер ГЗ-36
- 12. лабораторный стенд ИИТ
- 13. лабораторный стенд ИИТ
- 14. лабораторный стенд ИИТ
- 15. 312122 Комплект лабораторного оборудования

- 16. 157 Генератор СГС-6,25
- 17. Трансформатор ТД-120
- 18. 310498 Лабораторный стенд ЛЭС-5
- 19. 312126 Комплект лабораторного оборуд. по эл. техники
- 20. 312124 Комплект лабораторного оборудования
- 21. 312123 Комплект лабораторного оборудования
- 22. 312127 Комплект лабораторного оборудования
- 23. 312128 Комплект лабораторного оборудования
- 24. 312125 Комплект лабораторного оборудования
- 25. 16021 Стол по электротехнике
- 26. 16019 Стол по электротехнике
- 27. 16020 Стол по электротехнике
- 28. 16016 Стол по электротехнике
- 29. 16018 Стол по электротехнике
- 30. 16017 Стол по электротехнике
- 31. 180 Измерительный комплект К-506